Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Cognitive Psychology: Attention · Decision making · Learning · Judgement · Memory · Motivation · Perception · Reasoning · Thinking  - Cognitive processes Cognition - Outline Index


A widely accepted theory regarding the function of the prefrontal cortex is that it serves as a store of short-term memory. This idea was first formulated by Jacobsen, who reported in 1935 that damage to the primate prefrontal cortex caused short-term memory deficits. Karl Pribram and colleagues (1952) identified the part of the prefrontal cortex responsible for this deficit as area 46, also known as the dorsolateral prefrontal cortex (PFdl). More recently, Goldman-Rakic and colleagues (1993) evoked short-term memory loss in localized regions of space by temporary inactivation of portions of the PFdl. Once the concept of working memory (see also Working Memory Model) was established in contemporary neuroscience by Baddeley (1986), these neuropsychological findings contributed to the theory that the prefrontal cortex implements working memory and, in some extreme formulations, only working memory. In the 1990s this theory developed a wide following, and it became the predominant theory of PF function, especially for nonhuman primates. The concept of working memory used by proponents of this theory focused mostly on the short-term maintenance of information, and rather less on the manipulation or monitoring of such information or on the use of that information for decisions. Consistent with the idea that the prefrontal cortex functions predominantly in maintenance memory, delay-period activity in the PF has often been interpreted as a memory trace. (The phrase "delay-period activity" applies to neuronal activity that follows the transient presentation of an instruction cue and persists until a subsequent “go” or “trigger” signal.)

NIMH researchers Mikhail Lebedev, Adam Messinger, Jerald Kralik and Steven Wise challenged the working memory theory of prefrontal cortex function in the paper that they published in PLoS Biology (Lebedev, M.A., Messinger, A., Kralik, J.D., Wise, S.P. (2004) Representation of attended versus remembered locations in prefrontal cortex. PLoS Biology, 2: 1919-1935.) To explore alternative interpretations of delay-period activity in the prefrontal cortex, they investigated the discharge rates of single prefrontal neurons as monkeys attended to a stimulus marking one location while remembering a different, unmarked location. Both locations served as potential targets of a saccadic eye movement. Although the task made intensive demands on short-term memory, the largest proportion of prefrontal neurons represented attended locations, not remembered ones. These findings showed that short-term memory functions cannot account for all, or even most, delay-period activity in the part of the prefrontal cortex explored. The authors suggested that prefrontal activity during the delay-period contributes more to the process of attentional selection (and selective attention) than to memory storage.

Attention vs memory

Lebedev et al. experiment that dissociated representation of spatial attention from representation of spatial memory in prefrontal cortex

Suggested Reading[]

  • Baddeley A (1986) Working memory. Oxford: Oxford University Press. 289 p.
  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993a) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.”. J Neurosci 13: 1479–1497.
  • Jacobsen CF (1936) Studies of cerebral function in primates. I. The functions of the frontal associations areas in monkeys. Comp Psychol Monogr 13: 3–60.
  • Lebedev MA, Messinger A, Kralik JD, Wise SP (2004) Representation of attended versus remembered locations in prefrontal cortex. PLoS Biology, 2: 1919-1935.
  • Postle BR, Druzgal TJ, D'Esposito M (2003) Seeking the neural substrates of visual working memory storage. Cortex 39: 927–946.
  • Pribram KH, Mishkin M, Rosvold HE, Kaplan SJ (1952) Effects of delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. J Comp Physiol Psychol 45: 565–575.



Memory
Types of memory
Articulatory suppression‎ | Auditory memory | Autobiographical memory | Collective memory | Early memories | Echoic Memory | Eidetic memory | Episodic memory | Episodic-like memory  | Explicit memory  |Exosomatic memory | False memory |Flashbulb memory | Iconic memory | Implicit memory | Institutional memory | Long term memory | Music-related memory | Procedural memory | Prospective memory | Repressed memory | Retrospective memory | Semantic memory | Sensory memory | Short term memory | Spatial memory | State-dependent memory | Tonal memory | Transactive memory | Transsaccadic memory | Verbal memory  | Visual memory  | Visuospatial memory  | Working memory  |
Aspects of memory
Childhood amnesia | Cryptomnesia |Cued recall | Eye-witness testimony | Memory and emotion | Forgetting |Forgetting curve | Free recall | Levels-of-processing effect | Memory consolidation |Memory decay | Memory distrust syndrome |Memory inhibition | Memory and smell | Memory for the future | Memory loss | Memory optimization | Memory trace | Mnemonic | Memory biases  | Modality effect | Tip of the tongue | Lethologica | Memory loss |Priming | Primacy effect | Reconstruction | Proactive interference | Prompting | Recency effect | Recall (learning) | Recognition (learning) | Reminiscence | Retention | Retroactive interference | Serial position effect | Serial recall | Source amnesia |
Memory theory
Atkinson-Shiffrin | Baddeley | CLARION | Decay theory | Dual-coding theory | Interference theory |Memory consolidation | Memory encoding | Memory-prediction framework | Forgetting | Recall | Recognition |
Mnemonics
Method of loci | Mnemonic room system | Mnemonic dominic system | Mnemonic learning | Mnemonic link system |Mnemonic major system | Mnemonic peg system | [[]] |[[]] |
Neuroanatomy of memory
Amygdala | Hippocampus | prefrontal cortex  | Neurobiology of working memory | Neurophysiology of memory | Rhinal cortex | Synapses |[[]] |
Neurochemistry of memory
Glutamatergic system  | of short term memory | [[]] |[[]] | [[]] | [[]] | [[]] | [[]] |[[]] |
Developmental aspects of memory
Prenatal memory | |Childhood memory | Memory and aging | [[]] | [[]] |
Memory in clinical settings
Alcohol amnestic disorder | Amnesia | Dissociative fugue | False memory syndrome | False memory | Hyperthymesia | Memory and aging | Memory disorders | Memory distrust syndrome  Repressed memory  Traumatic memory |
Retention measures
Benton | CAMPROMPT | Implicit memory testing | Indirect tests of memory | MAS | Memory tests for children | MERMER | Rey-15 | Rivermead | TOMM | Wechsler | WMT | WRAML2 |
Treating memory problems
CBT | EMDR | Psychotherapy | Recovered memory therapy |Reminiscence therapy | Memory clinic | Memory training | Rewind technique |
Prominant workers in memory|-
Baddeley | Broadbent |Ebbinghaus  | Kandel |McGaugh | Schacter  | Treisman | Tulving  |
Philosophy and historical views of memory
Aristotle | [[]] |[[]] |[[]] |[[]] | [[]] | [[]] | [[]] |
Miscellaneous
Journals | Learning, Memory, and Cognition |Journal of Memory and Language |Memory |Memory and Cognition | [[]] | [[]] | [[]] |
This page uses Creative Commons Licensed content from Wikipedia (view authors).