Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

style="background: #F8EABA; text-align: center;" colspan="2" Cyclic adenosine monophosphate
CAS number 60-92-4
PubChem 6076
MeSH Cyclic+AMP
Molecular formula C10H12N5O6P
Molar mass 329.206
style="background: #F8EABA; text-align: center;" colspan="2" Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)

Infobox disclaimer and references

Cyclic adenosine monophosphate (cAMP, cyclic AMP or 3'-5'-cyclic adenosine monophosphate) is a molecule that is important in many biological processes; it is derived from what is known as adenosine triphosphate (ATP).

Synthesis and decomposition

cAMP is synthesised from ATP by adenylyl cyclase which is located at the cell membranes. Adenylyl cyclase is activated by the hormones glucagon and epinephrine through the activation of adenylyl cyclase stimulatory G (Gs)-coupled receptors and inhibited by agonists of adenylyl cyclase inhibitory G (Gi)-protein coupled receptors. Liver adenylyl cyclase responds more strongly to glucagon, and muscle adenylyl cyclase responds more strongly to adrenaline.

cAMP decomposition into AMP is catalyzed by the enzyme phosphodiesterase.


cAMP is a second messenger, used for intracellular signal transduction, such as transferring the effects of hormones like glucagon and adrenaline, which cannot get through the cell membrane. Its purposes include the activation of protein kinases and regulating the effects of adrenaline and glucagon. It is also used to regulate the passage of Ca2+ through ion channels.

In humans

Main article: function of cAMP-dependent protein kinase

Epinephrine (adrenaline) binds its receptor, that associates with an heterotrimeric G protein. The G protein associates with adenylyl cyclase that converts ATP to cAMP, spreading the signal (more details...)

In humans, cyclic AMP works by activating protein kinase A (PKA, also known as cAMP-dependent protein kinase). This is normally inactive as a tetrameric holoenzyme, consisting of 2 catalytic and 2 regulatory units (C2R2), with the regulatory units blocking the catalytic centers of the catalytic units.

Cyclic AMP binds to specific locations on the regulatory units of the protein kinase, and causes dissociation between the regulatory and catalytic subunits, thus activating the catalytic units and enabling them to phosphorylate substrate proteins.

Further effects thus depends on cAMP-dependent protein kinase, which are found in function of cAMP-dependent protein kinase. These effects depend on the type of cell, but includes regulation of glycogen, sugar, and lipid metabolism. Cyclic AMP activates protein kinase A by binding to its two regulatory subunits, causing the release of active catalytic subunits. The active subunits catalyze the transfer of phosphate from ATP to specific serine or threonine residues of protein substrates. The phosphorylated proteins may act directly on the cell's ion channels, or may become activated or inhibited enzymes. Protein kinase A can also phosphorylate specific proteins that bind to promoter regions of DNA, causing increased expression of specific genes. Not all protein kinases respond to cAMP: several types of protein kinases are not cAMP dependent, for example protein kinase C.


Role of cAMP in human carcinoma

Some research has suggested that a deregulation of cAMP pathways and an aberrant activation of cAMP-controlled genes is linked to the growth of some cancers.[1][2][3]

Role of cAMP in Prefrontal Cortex Disorders

Recent research may indicate that cAMP affects the function of higher order thinking in the prefrontal cortex through its regulation of ion channels called hyperpolarization-activated cyclic nucleotide-gated channels (HCN). When cAMP stimulates the HCN, these gates open, rendering the brain cell closed to communication, thus interfering with prefrontal cortex function. This research is of interest to scientists studying the brain, especially the degradation of higher cognitive function in ADHD and aging.[4]

See also


  • Abbott, C. R., Rossi, M., Kim, M.-S., AlAhmed, S. H., Taylor, G. M., Ghatei, M. A., et al. (2000). Investigation of the melanocyte stimulating hormones on food intake: Lack of evidence to support a role for the melanocortin-3-receptor: Brain Research Vol 869(1-2) Jun 2000, 203-210.
  • Abel, T., & Kaplan, M. R. (2003). Genetic Approaches to the Study of Synaptic Plasticity and Memory Storage: CNS Spectrums Vol 8(8) Aug 2003, 597-610.
  • Ader, J. P., Sebens, J. B., & Korf, J. (1980). Central levels of noradrenaline, 3-methoxy-4-hydroxyphenylethyleneglycol and cyclic AMP in the rat after activation of Locus coeruleus neurons: Influence of single and repeated neuroleptic treatment: Psychopharmacology Vol 70(3) Oct 1980, 239-245.
  • Andersen, S. L. (2002). Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD): Behavioural Brain Research Vol 130(1-2) Mar 2002, 197-201.
  • Anokhina, I. P., Vekshina, N. L., Kuznetsova, M. N., Ovchinnikova, L. N., & et al. (1992). Some biological mechanisms of inherent predisposition to alcoholism: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 78(12) Dec 1992, 30-38.
  • Arato, M., Bagdy, G., Perenyi, A., & Bela, A. (1984). Comparative neurochemical investigation of tardive dyskinesia and neuroleptic-induced chronic parkinsonism: Psychiatry Research Vol 11(4) 1984, 347-351.
  • Arato, M., Rihmer, Z., & Felszeghy, K. (1980). Reduced plasma cyclic AMP level during prophylactic lithium treatment in patients with affective disorders: Biological Psychiatry Vol 15(2) Apr 1980, 319-322.
  • Arnsten, A. F. T. (2007). Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": A rational bridge between genetics and the symptoms of mental illness: Cerebral Cortex Vol 17(Suppl 1) Sep 2007, 6-15.
  • Askew, W. E., & Charalampous, K. D. (1978). Chronic ethanol and neural C-AMP: Life Sciences Vol 22(8) Feb 1978, 639-646.
  • Ballinger, C. B., Buckley, D. E., Naylor, G. J., & Stansfield, D. A. (1979). Emotional disturbance following childbirth: Clinical findings and urinary excretion of cyclic AMP (adenosine 3'5' cyclic monophosphate): Psychological Medicine Vol 9(2) May 1979, 293-300.
  • Ballinger, C. B., Kay, D. S., Naylor, G. J., & Smith, A. H. (1982). Some biochemical findings during pregnancy and after delivery in relation to mood change: Psychological Medicine Vol 12(3) Aug 1982, 549-556.
  • Barth, A. L., McKenna, M., Glazewski, S., Hill, P., Impey, S., Storm, D., et al. (2000). Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex: Journal of Neuroscience Vol 20(11) Jun 2000, 4206-4216.
  • Beitner-Johnson, D., Guitart, X., & Nestler, E. J. (1991). Dopaminergic brain reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine- and cocaine-regulated phosphoproteins: Brain Research Vol 561(1) Oct 1991, 147-150.
  • Belardetti, F., & et al. (1982). Role of serotonin and cyclic AMP on facilitation of the fast conducting system activity in the leech Hirudo medicinalis: Brain Research Vol 246(1) Aug 1982, 89-103.
  • Belardetti, F., & et al. (1983). Heterosynaptic facilitation and behavioral sensitization are inhibited by lowering endogenous cAMP in Aplysia: Brain Research Vol 288(1-2) Dec 1983, 95-104.
  • Belmaker, R. H. (1981). Receptors, adenylate cyclase, depression, and lithium: Biological Psychiatry Vol 16(4) Apr 1981, 333-350.
  • Belmaker, R. H., Kon, M., Ebstein, R. P., & Dasberg, H. H. (1980). Partial inhibition by lithium of the epinephrine-stimulated rise in plasma cyclic GMP in humans: Biological Psychiatry Vol 15(1) Feb 1980, 3-8.
  • Belmaker, R. H., Lerer, B., Newman, M., & Fuchs, I. (1991). Lack of effect of lithium, propranolol or haloperidol on basal plasma cyclic AMP levels: Lithium Vol 2(2) May 1991, 115-116.
  • Beninger, R. J., Nakonechny, P. L., & Savina, I. (2003). cAMP-dependent protein kinase and reward-related learning: Intra-accumbens Rp-cAMPS blocks amphetamine-produced place conditioning in rats: Psychopharmacology Vol 170(1) Oct 2003, 23-32.
  • Bernabeu, R., Schmitz, P., Faillace, M. P., & Izquierdo, I. (1996). Hippocampal cGMP and cAMP are differentially involved in memory processing of inhibitory avoidance learning: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(2) Jan 1996, 585-588.
  • Beyer, C., Canchola, E., & Larsson, K. (1981). Facilitation of lordosis behavior in the ovariectomized estrogen primed rat by dibutyryl cAMP: Physiology & Behavior Vol 26(2) Feb 1981, 249-251.
  • Beyer, C., Gomora, P., Canchola, E., & Sandoval, Y. (1982). Pharmacological evidence that LH-RH action on lordosis behavior is mediated through a risk in cAMP: Hormones and Behavior Vol 16(1) Mar 1982, 107-112.
  • Beyer, C., Gonzalez-Flores, O., Garcia-Juarez, M., & Gonzalez-Mariscal, G. (2003). Non-ligand activation of estrous behavior in rodents: Cross-talk at the progesterone receptor: Scandinavian Journal of Psychology Vol 44(3) Jul 2003, 221-229.
  • Beyer, C., Gonzalez-Flores, O., & Gonzalez-Mariscal, G. (1997). Progesterone Receptor Participates in the Stimulatory Effect of LHRH, Prostaglandin E2, and Cyclic Amp on Lordosis and Proceptive Behaviours in Rats: Journal of Neuroendocrinology Vol 9(8) Aug 1997, 609-614.
  • Biederman, J., & et al. (1976). Neuroleptics reduce spinal fluid cyclic AMP in schizophrenic patients: Neuropsychobiology Vol 2(5-6) 1976, 324-327.
  • Blendy, J. A. (2006). The Role of CREB in Depression and Antidepressant Treatment: Biological Psychiatry Vol 59(12) Jun 2006, 1144-1150.
  • Bolekhan, E. A., Semenov, D. G., Gerasimova, I. A., & Samoilov, M. O. (1997). Use of phenylthiocarbamide for assessing cAMP-dependent resistance to anoxia in animals: Neuroscience and Behavioral Physiology Vol 27(3) May-Jun 1997, 268-271.
  • Bonnet, K. A., Branchey, L. B., Friedhoff, A. J., & Ehrlich, Y. H. (1978). Long-term narcotic exposure reduces caudate cyclic nucleotide levels, protein phosphorylation and tyrosine hydroxylase activities: Life Sciences Vol 22(22) Jun 1978, 2003-2008.
  • Bowers, M. B., & Study, R. E. (1979). Cerebrospinal fluid cyclic AMP and acid monoamine metabolites following probenecid: Studies in psychiatric patients: Psychopharmacology Vol 62(1) 1979, 17-22.
  • Branton, R. L., Love, R. M., & Clarke, D. J. (1998). cAMP included during cell suspension preparation improves survival of dopaminergic neurons in vitro: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(14) Oct 1998, 3223-3227.
  • Brenhouse, H. C., Howe, M. L., & Stellar, J. R. (2007). Differential Activation of cAMP Response Element Binding Protein in Discrete Nucleus Accumbens Subregions During Early and Late Cocaine Sensitization: Behavioral Neuroscience Vol 121(1) Feb 2007, 212-217.
  • Brightwell, J. J., Smith, C. A., Countryman, R. A., Neve, R. L., & Colombo, P. J. (2005). Hippocampal overexpression of mutant creb blocks long-term, but not short-term memory for a socially transmitted food preference: Learning & Memory Vol 12(1) Jan 2005, 12-17.
  • Brightwell, J. J., Smith, C. A., Neve, R. L., & Colombo, P. J. (2007). Long-term memory for place learning is facilitated by expression of cAMP response elementing-binding protein in the dorsal hippocampus: Learning & Memory Vol 14(3) Mar 2007, 195-199.
  • Brown, L. (1992). Cyclic adenosine monophosphate (cAMP): Its role in the stress response. Bowen Hills, QLD, Australia: Australian Academic Press.
  • Bruijnzeel, A. W., Stam, R., Compaan, J. C., & Wiegant, V. M. (2001). Stress-induced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system: Brain Research Vol 908(2) Jul 2001, 187-196.
  • Buccafusco, J. J. (1991). Inhibition of the morphine withdrawal syndrome by a novel muscarinic antagonist (4-DAMP): Life Sciences Vol 48(8) 1991, 749-756.
  • Bunnell, B. N., Meyerhoff, J. L., & Kant, G. J. (1988). Psychological stress increases pituitary cyclic AMP: Pharmacology, Biochemistry and Behavior Vol 29(1) Jan 1988, 151-155.
  • Cadogan, A. K., Kendall, D. A., Fink, H., & Marsden, C. A. (1994). Social interaction increases 5-HT release and cAMP efflux in the rat ventral hippocampus in vivo: Behavioural Pharmacology Vol 5(3) Jun 1994, 299-305.
  • Carli, M., Anand-Srivastava, M. B., Molina-Holgado, E., Dewar, K. M., & et al. (1994). Effects of chronic lithium treatments on central dopaminergic receptor systems: G proteins as possible targets: Neurochemistry International Vol 24(1) Jan 1994, 13-22.
  • Chandler, L. J., Bonci, A., Wand, G. S., & Morrisett, R. A. (2004). Recent Advances in Cyclic-Adenosine Monophosphate/ Protein Kinase A Signaling in Ethanol-Induced Synaptic and Behavioral Alterations: Alcoholism: Clinical and Experimental Research Vol 28(7) Jul 2004, 1129-1136.
  • Chang, A. (2004). Postmortem brain studies of cyclic AMP-dependent protein kinase abnormalities in bipolar affective disorder. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Chong, Y. H., Ah Shin, S., Joo Lee, H., Hee Lee Kang, J., & Suh, Y.-H. (2002). Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer's amyloid precursor protein: Journal of Neuroimmunology Vol 133(1-2) Dec 2002, 160-174.
  • Chute, D. L., Villiger, J. W., & Kirton, N. F. (1981). Testing cyclic AMP mediation of memory: Reversal of !a-methyl-p-tyrosine-induced amnesia: Psychopharmacology Vol 74(2) Jul 1981, 129-131.
  • Cohen, M., Sklair-Tavron, L., & Pollack, S. (2004). The Association of Forskolin-Stimulated Cyclic AMP Levels in Peripheral Blood Mononuclear Cells of Healthy People with Depressive Mood and Sense of Coherence: Journal of Psychophysiology Vol 18(4) 2004, 177-183.
  • Collado, M. L., Rodriguez-Manzo, G., & Cruz, M. L. (1985). Effect of progesterone upon adenylate cyclase activity and cAMP levels on brain areas: Pharmacology, Biochemistry and Behavior Vol 23(4) Oct 1985, 501-504.
  • Corda, M. G., Biggio, G., & Gessa, G. L. (1980). Brain nucleotides in naive and handling-habituated rats: Differences in levels and drug-sensitivity: Brain Research Vol 188(1) Apr 1980, 287-290.
  • Cotzias, G. C., & Tang, L. C. (1977). An adenylate cyclase of brain reflects propensity for breast cancer in mice: Science Vol 197(4308) Sep 1977, 1094-1096.
  • Cremers, T. I. F. H., Wiersma, L. J., Bosker, F. J., den Boer, J. A., Westerink, B. H. C., & Wikstrom, H. V. (2001). Is the beneficial antidepressant effect of coadministration of pindolol really due to somatodendritic autoreceptor antagonism? : Biological Psychiatry Vol 50(1) Jul 2001, 13-21.
  • Cui, W., Smith, A., Darby-King, A., Harley, C. W., & McLean, o. H. (2007). A temporal-specific and transient cAMP increase characterizes odorant classical conditioning: Learning & Memory Vol 14(3) Mar 2007, 126-133.
  • Damaj, M. I., Welch, S. P., & Martin, B. R. (1994). Nicotine-induced antinociception in mice: Role of G-proteins and adenylate cyclase: Pharmacology, Biochemistry and Behavior Vol 48(1) May 1994, 37-42.
  • Danilova, R. A., Gurevich, E. B., & Storojeva, S. I. (1985). Influence of 8-Br-cAMP (analogue of cAMP) on the formation of conditioned behaviour in white rats: Zhurnal Vysshei Nervnoi Deyatel'nosti Vol 35(2) 1985, 267-271.
  • Dash, P. K., Hochner, B., & Kandel, E. R. (1990). Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation: Nature Vol 345(6277) Jun 1990, 718-721.
  • Davis, J. A., & Gould, T. J. (2005). Rolipram Attenuates MK-801-Induced Deficits in Latent Inhibition: Behavioral Neuroscience Vol 119(2) Apr 2005, 595-602.
  • De Felice, F. G., Wasilewska-Sampaio, A. P., Barbosa, A. C. A. P., Gomes, F. C. A., Klein, W. L., & Ferreira, S. T. (2007). Cyclic AMP enhancers and Abeta oligomerization blockers as potential therapeutic agents in Alzheimer's disease: Current Alzheimer Research Vol 4(3) Jul 2007, 263-271.
  • de Leon-Jones, F. A., & et al. (1977). Urinary cyclic AMP excretion by methadone subjects during gradual and acute withdrawal: Psychopharmacology Vol 54(1) 1977, 17-20.
  • de Lima, T. C. M., & Davis, M. (1995). Involvement of cyclic AMP at the level of the nucleus reticularis pontis caudalis in the acoustic startle response: Brain Research Vol 700(1-2) Nov 1995, 59-69.
  • de Vries, G. W., Cohen, A. I., Lowry, O. H., & Ferrendelli, J. A. (1982). Cyclic nucleotide levels in light- and dark-adapted ground squirrel whole eyes: Vision Research Vol 22(10) 1982, 1237-1240.
  • Dell'Osso, L., Carmassi, C., Palego, L., Trincavelli, M. L., Tuscano, D., Montali, M., et al. (2004). Serotonin-Mediated Cyclic AMP Inhibitory Pathway in Platelets of Patients Affected by Panic Disorder: Neuropsychobiology Vol 50(1) 2004, 28-36.
  • Dierssen, M., Marmol, F., Vivas, N. M., Clos, M. V., & et al. (1992). Post-train administration of 9-amino-1,2,3,4-tetrahydroacridine enhances passive avoidance retention and decreases !b-adrenoceptor-linked cyclic AMP formation in middle-aged rats: Brain Research Vol 586(1) Jul 1992, 117-120.
  • Dierssen, M., Vallina, I. F., Baamonde, C., Lumbreras, M. A., et al., & et al. (1996). Impaired cyclic AMP production in the hippocampus of a Down syndrome murine model: Developmental Brain Research Vol 95(1) Aug 1996, 122-124.
  • Donohue, T., Hoffman, P. L., & Tabakoff, B. (2005). Effect of Ethanol on DARPP-32 Phosphorylation in Transgenic Mice That Express Human Type VII Adenylyl Cyclase in Brain: Alcoholism: Clinical and Experimental Research Vol 29(3) Mar 2005, 310-316.
  • Doty, R. L., Kreiss, D. S., & Frye, R. E. (1990). Human odor intensity perception: Correlation with frog epithelial adenylate cyclase activity and transepithelial voltage response: Brain Research Vol 527(1) Sep 1990, 130-134.
  • D'Sa, C., Eisch, A. J., Bolger, G. B., & Duman, R. S. (2005). Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration: European Journal of Neuroscience Vol 22(6) Sep 2005, 1463-1475.
  • Dudai, Y. (1985). Genes, enzymes and learning in Drosophila: Trends in Neurosciences Vol 8(1) Jan 1985, 18-21.
  • Dwivedi, Y., Rao, J. S., Rizavi, H. S., Kotowski, J., Conley, R. R., Roberts, R. C., et al. (2003). Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects: Archives of General Psychiatry Vol 60(3) Mar 2003, 273-282.
  • Dwivedi, Y., Rizavi, H. S., Shukla, P. K., Lyons, J., Faludi, G., Palkovits, M., et al. (2004). Protein Kinase A in Postmortem Brain of Depressed Suicide Victims: Altered Expression of Specific Regulatory and Catalytic Subunits: Biological Psychiatry Vol 55(3) Feb 2004, 234-243.
  • Dyck, D. G., Driedger, S. M., Nemeth, R., & Osachuk, T. A. (1987). Conditioned tolerance to drug-induced (poly I:C) natural killer cell activation: Effects of drug-dosage and context-specificity parameters: Brain, Behavior, and Immunity Vol 1(3) Sep 1987, 251-266.
  • Ebstein, R. P., Oppenheim, G., Ebstein, B. S., Amiri, Z., & et al. (1986). The cyclic AMP second messenger system in man: The effects of heredity, hormones, drugs, aluminum, age and disease on signal amplification: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 10(3-5) 1986, 323-353.
  • Ebstein, R. P., Oppenheim, G., & Stessman, J. (1984). Alzheimer's disease: Isoproterenol and prostaglandin E-sub-1-stimulated cyclic AMP accumulation in lymphocytes: Life Sciences Vol 34(23) Jun 1984, 2239-2243.
  • Egorova, L. K., Stepanichev, M. Y., Mikhalev, S. L., Kutepova, O. A., & Gulyaeva, N. V. (2003). Analysis of cyclic adenosine-3',5'-monophosphate levels in structures of the "informational" and "motivational" systems of the rat brain during acquisition of a conditioned active avoidance reaction: Neuroscience and Behavioral Physiology Vol 33(4) May 2003, 329-333.
  • Emamghoreishi, M., Li, P. P., Schlichter, L., Parikh, S. V., Cooke, R., & Warsh, J. J. (2000). Associated disturbances in calcium homeostasis and G protein-mediated cAMP signaling in bipolar I disorder: Biological Psychiatry Vol 48(7) Oct 2000, 665-673.
  • Engel, J. E., & Wu, C.-F. (1996). Altered habituation of an identified escape circuit in Drosophila memory mutants: Journal of Neuroscience Vol 16(10) May 1996, 3486-3499.
  • Fan, F., Tao, Q., Abood, M., & Martin, B. R. (1988). Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice: Brain Research Vol 464 1988, 13-20.
  • Ferrendelli, J. A., Blank, A. C., & Gross, R. A. (1980). Relationships between seizure activity and cyclic nucleotide levels in brain: Brain Research Vol 200(1) Oct 1980, 93-103.
  • Frey, U., Huang, Y. Y., & Kandel, E. R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons: Science Vol 260(5114) Jun 1993, 1661-1664.
  • Gallagher, H. C., Bacon, C. L., Odumeru, O. A., Gallagher, K. F., Fitzpatrick, T., & Regan, C. M. (2004). Valproate activates phosphodiesterase-mediated cAMP degradation: Relevance to C6 glioma Gl phase progression: Neurotoxicology and Teratology Vol 26(1) Jan-Feb 2004, 73-81.
  • Gammie, S. C., & Nelson, R. J. (2001). cFos and pCREB activation and maternal aggression in mice: Brain Research Vol 898(2) Apr 2001, 232-241.
  • Gershon, A. A., Vishne, T., & Grunhaus, L. (2007). Dopamine D2-Like Receptors and the Antidepressant Response: Biological Psychiatry Vol 61(2) Jan 2007, 145-153.
  • Gillard, E. R. (1998). The second messenger camp stimulates eating in the perifornical and lateral hypothalamus. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Gillard, E. R., Khan, A. M., Grewal, R. S., Mouradi, B., Wolfsohn, S. D., & Stanley, B. G. (1998). The second messenger cAMP elicits eating by an anatomically specific action in the perifornical hypothalamus: Journal of Neuroscience Vol 18(7) Apr 1998, 2646-2652.
  • Goldberg, M., & et al. (1984). Plasma cyclic AMP and cyclic GMP in childhood-onset psychoses: Journal of Autism and Developmental Disorders Vol 14(2) Jun 1984, 159-164.
  • Goodwin, S. F., Del Vecchio, M., Velinzon, K., Hogel, C., & et al. (1997). Defective learning in mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase: Journal of Neuroscience Vol 17(22) Nov 1997, 8817-8827.
  • Gould, T. D., & Manji, H. (2002). Signaling networks in the pathophysiology and treament of mood disorders: Journal of Psychosomatic Research Vol 53(2) Aug 2002, 687-698.
  • Guidotti, A., Naik, S. R., & Kurosawa, A. (1977). Possible role of gamma aminobutyric acid (GABA) in the regulation of cAMP system in rat anterior pituitary: Psychoneuroendocrinology Vol 2(3) Jul 1977, 227-235.
  • Gur, E., Berman, E., Lerer, B., & Newman, M. E. (1997). In vivo cyclic AMP responses in rat brain are not modified by chronic electroconvulsive shock: European Neuropsychopharmacology Vol 7(3) Aug 1997, 189-193.
  • Halper, J. P., Brown, R. P., Sweeney, J. A., Kocsis, J. H., & et al. (1988). Blunted !b-adrenergic responsivity of peripheral blood mononuclear cells in endogenous depression: Isoproterenol dose-response studies: Archives of General Psychiatry Vol 45(3) Mar 1988, 241-244.
  • Hamburger-Bar, R., & Newman, M. E. (1985). Effects of vasopressin on noradrenaline-induced cyclic AMP accumulation in rat brain slices: Pharmacology, Biochemistry and Behavior Vol 22(2) Feb 1985, 183-187.
  • Hamburger-Bar, R., Robert, M., Newman, M., & Belmaker, R. H. (1986). Interstrain correlation between behavioural effects of lithium and effects on cortical cyclic AMP: Pharmacology, Biochemistry and Behavior Vol 24(1) Jan 1986, 9-13.
  • Hanoune, J., & Defer, N. (2001). Regulation and role of adenylyl cyclase isoforms: Annual Review of Pharmacology and Toxicology Vol 41 2001, 145-174.
  • Harston, C. T. (1978). The effects of D-Ala-2-Met-5-Enkephalinamide on behavioral activity and cyclic nucleotides in the rat brain: Dissertation Abstracts International.
  • Heal, D. J., & Green, A. R. (1978). Repeated electroconvulsive shock increases the behavioural responses of rats to injection of both dopamine and dibutyryl cyclic AMP into the nucleus accumbens: Neuropharmacology Vol 17(12) Dec 1978, 1085-1087.
  • Heal, D. J., Phillips, A. G., & Green, A. R. (1978). Studies on the locomotor activity produced by injection of dibutyryl cyclic 3'5'AMP into the nucleus accumbens of rats: Neuropharmacology Vol 17(4-5) Apr-May 1978, 265-270.
  • Helm, K. A., Haberman, R. P., Dean, S. L., Hoyt, E. C., Melcher, T., Lund, P. K., et al. (2005). GABA-sub(B ) receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus: Neuropharmacology Vol 48(7) Jun 2005, 956-964.
  • Hernandez, A., Soto-Moyano, R., Mestre, C., Eschalier, A., & et al. (1995). Intrathecal pertussis toxin but not cyclic AMP blocks kappa opioid-induced antinociception in rat: International Journal of Neuroscience Vol 81(3-4) Apr 1995, 193-197.
  • Hosford, D. A. (1981). The interactions of morphine, met-enkephalin, cyclic AMP analogues and a phosphodiesterase inhibitor with neuronal firing in the rat: Dissertation Abstracts International.
  • Houpt, T. A., Frankmann, S. P., & Berlin, R. (1996). Cyclic AMP tastes aversive, not sweet, to rats: Physiology & Behavior Vol 59(3) Mar 1996, 495-498.
  • Iga, J.-i., Ueno, S.-i., Yamauchi, K., Numata, S., Kinouchi, S., Tayoki-Shibuya, S., et al. (2007). Altered HDAC5 and CREB mRNA expressions in the peripheral leukocytes of major depression: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 31(3) Apr 2007, 628-632.
  • Imai, T., Suzuki, M., & Sakano, H. (2006). Odorant Receptor-Derived cAMP Signals Direct Axonal Targeting: Science Vol 314(5799) Oct 2006, 657-661.
  • Isom, G. E., McCarthy, T. A., Eells, J. T., & Wimer, E. R. (1978). Influence of intracerebroventricular injections of N-6, O-2'-dibutyryl adenosine 3':5'-cyclic monophosphate on sodium pentobarbital-induced narcosis in rats: Neuropharmacology Vol 17(1) Jan 1978, 53-58.
  • Itoh, A., Shiotani, T., Nakayama, S., Mamiya, T., Hasegawa, T., Noda, Y., et al. (2000). Attenuation of the development of morphine dependence/tolerance by nefiracetam: Involvement of adenosine 3':5'-cyclic monophosphate system: Behavioural Brain Research Vol 115(1) Oct 2000, 65-74.
  • Johnson, G. V., & Jope, R. S. (1986). Aluminum increases cyclic AMP in rat cerebral cortex in vivo: Life Sciences Vol 39(14) Oct 1986, 1301-1305.
  • Jones, R. S. (1978). Noradrenaline sensitive adenylate cyclase in rat cerebral cortex: Effects of antidepressant drugs: Neuropharmacology Vol 17(9) Sep 1978, 771-774.
  • Jope, R. S., Song, L., & Kolasa, K. (1992). Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures: Biological Psychiatry Vol 31(5) Mar 1992, 505-514.
  • Kafka, M. S., Benedito, M. A., Roth, R. H., Steele, L. K., & et al. (1986). Circadian rhythms in catecholamine metabolites and cyclic nucleotide production: Chronobiology International Vol 3(2) 1986, 101-115.
  • Kafka, M. S., Kleinman, J. E., Karson, C. N., & Wyatt, R. J. (1986). Alpha-adrenergic receptors and cyclic AMP production in a group of schizophrenic patients: Hillside Journal of Clinical Psychiatry Vol 8(1) Spr-Sum 1986, 15-24.
  • Kafka, M. S., Nurnberger, J. I., Siever, L., Targum, S., & et al. (1986). Alpha-sub-2-adrenergic receptor function in patients with unipolar and bipolar affective disorders: Journal of Affective Disorders Vol 10(2) Mar-Apr 1986, 163-169.
  • Kafka, M. S., Van Kammen, D. P., & Bunney, W. E. (1979). Reduced cyclic AMP production in the blood platelets from schizophrenic patients: American Journal of Psychiatry Vol 136(5) May 1979, 685-687.
  • Kanba, S., Pfenning, M., & Richelson, E. (1985). Lithium ions inhibit function of low- but not high-affinity muscarinic receptors of murine neuroblastoma cells (clone N1E-115): Psychopharmacology Vol 86(4) Aug 1985, 413-416.
  • Kanba, S., Yagi, G., Nakaki, T., & Kato, R. (1991). Potentiation by a sodium channel activator of effects of lithium ion on cyclic AMP, cyclic GMP and inositol phosphates: Neuropharmacology Vol 30(5) May 1991, 497-500.
  • Kandel, E. R., & Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release: Science Vol 218(4571) Oct 1982, 433-442.
  • Kanof, P. D., Coccaro, E. F., Johns, C. A., Davidson, M., & et al. (1989). Cyclic-AMP production by polymorphonuclear leukocytes in psychiatric disorders: Biological Psychiatry Vol 25(4) Feb 1989, 413-420.
  • Kanof, P. D., Johns, C., Davidson, M., Siever, L. J., & et al. (1986). Prostaglandin receptor sensitivity in psychiatric disorders: Archives of General Psychiatry Vol 43(10) Oct 1986, 987-993.
  • Kant, G. J., & et al. (1983). Comparison of stress response in male and female rats: Pituitary cyclic AMP and plasma prolactin, growth hormone and corticosterone: Psychoneuroendocrinology Vol 8(4) 1983, 421-428.
  • Kant, G. J., & et al. (1983). Effects of repeated stress on pituitary cyclic AMP, and plasma prolactin, corticosterone and growth hormone in male rats: Pharmacology, Biochemistry and Behavior Vol 18(6) Jun 1983, 967-971.
  • Kant, G. J., Meyerhoff, J. L., Bunnell, B. N., & Lenox, R. H. (1982). Cyclic AMP and cyclic GMP response to stress in brain and pituitary: Stress elevates pituitary cyclic AMP: Pharmacology, Biochemistry and Behavior Vol 17(5) Nov 1982, 1067-1072.
  • Kant, G. J., Meyerhoff, J. L., & Jarrard, L. E. (1984). Biochemical indices of reactivity and habituation in rats with hippocampal lesions: Pharmacology, Biochemistry and Behavior Vol 20(5) May 1984, 793-797.
  • Kashiwayanagi, M., Shimano, K., & Kurihara, K. (1996). Existence of multiple receptors in single neurons: Responses of single bullfrog olfactory neurons to many cAMP-dependent and independent odorants: Brain Research Vol 738(2) Nov 1996, 222-228.
  • Kehne, J. H., Cassella, J. V., Aghajanian, G. K., Tallman, J. F., & et al. (1987). Pertussis toxin or 8-bromo-cAMP block inhibition of the acoustic startle response by the !a-sub-2-adrenergic agonist ST-91: Brain Research Vol 406(1-2) Mar 1987, 87-92.
  • Kenis, G., Steinbusch, H., De Baets, M., & Maes, M. (2003). Influence of antidepressants on intracellular levels of cyclic adenosine monophosphate in human peripheral blood mononuclear cells: European Neuropsychopharmacology Vol 13(1) Jan 2003, 53-56.
  • Kida, S., Josselyn, S. A., Ortiz, S. P. d., Kogan, J. H., Chevere, I., Masushige, S., et al. (2002). CREB required for the stability of new and reactivated fear memories: Nature Neuroscience Vol 5(4) Apr 2002, 348-355.
  • Kim, J. J. (1996). Cyclic nucleotides and memory: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(2) Jan 1996, 385.
  • Kim, Y.-T., & Wu, C.-F. (1996). Reduced growth cone motility in cultured neurons from Drosophila memory mutants with a defective cAMP cascade: Journal of Neuroscience Vol 16(18) Sep 1996, 5593-5602.
  • Kirstein, S. L., & Tabakoff, B. (2001). Genetic correlations between initial sensitivity to ethanol and brain cAMP signaling in inbred and selectively bred mice: Alcoholism: Clinical and Experimental Research Vol 25(6) Jun 2001, 791-799.
  • Klamer, D., Palsson, E., Fejgin, K., Zhang, J., Engel, J. A., & Svensson, L. (2005). Activation of a nitric-oxide-sensitive cAMP pathway with phencyclidine: elevated hippocampal cAMP levels are temporally associated with deficits in prepulse inhibition: Psychopharmacology Vol 179(2) May 2005, 479-488.
  • Klein, M. (1993). Differential cyclic AMP dependence of facilitation at Aplysia sensorimotor synapses as a function of prior stimulation: Augmentation versus restoration of transmitter release: Journal of Neuroscience Vol 13(9) Sep 1993, 3793-3801.
  • Klysner, R., Geisler, A., & Rosenberg, R. (1987). Enhanced histamine- and !b-adrenoceptor-mediated cyclic AMP formation in leukocytes from patients with endogenous depression: Journal of Affective Disorders Vol 13(3) Nov-Dec 1987, 227-232.
  • Knapp, C. M., Foye, M. M., Ciraulo, D. A., & Kornetsky, C. (1999). The type IV phosphodiesterase inhibitors, Ro 20-1724 and rolipram, block the initiation of cocaine self-administration: Pharmacology, Biochemistry and Behavior Vol 62(1) Jan 1999, 151-158.
  • Kofman, O., & Bersudsky, Y. (2000). Behavioural effects of NKH-477, a forskolin analogue, on locomotion and rearing in rats: International Journal of Neuropsychopharmacology Vol 3(1) Mar 2000, 27-33.
  • Koh, M. T., Thiele, T. E., & Bernstein, I. L. (2002). Inhibition of protein kinase A activity interferes with long-term, but not short-term, memory of conditioned taste aversions: Behavioral Neuroscience Vol 116(6) Dec 2002, 1070-1074.
  • Kostopoulos, G. K., & Phillis, J. W. (1977). Purinergic depression of neurons in different areas of the rat brain: Experimental Neurology Vol 55(3, Pt l) Jun 1977, 719-724.
  • Kovacs, G. L., & Toldy, E. (2003). Basal and isoproterenol-stimulated cyclic-adenosine monophosphate levels in mouse hippocampus and lymphocytes during alcohol tolerance and withdrawal: Alcohol and Alcoholism Vol 38(1) Jan/Feb 2003, 11-17.
  • Krulik, R., Farska, I., & Prokes, J. (1977). Effect of rubidium, lithium and cesium on brain ATPase and protein kinases: Neuropsychobiology Vol 3(2-3) 1977, 129-134.
  • Kruuse, C., Thomsen, L. L., Birk, S., & Olesen, J. (2003). Migraine can be induced by sildenafil without changes in middle cerebral artery diameter: Brain: A Journal of Neurology Vol 126(1) Jan 2003, 241-247.
  • Kudo, K., Qiao, C.-X., Kanba, S., & Arita, J. (2004). A selective increase in phosphorylation of cyclic AMP response element-binding protein in hippocampal CA1 region of male, but not female, rats following contextual fear and passive avoidance conditioning: Brain Research Vol 1024(1-2) Oct 2004, 233-243.
  • Lamprecht, R., Hazvi, S., & Dudai, Y. (1997). cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory: Journal of Neuroscience Vol 17(21) Nov 1997, 8443-8450.
  • Laties, A., & Sharlip, I. (2006). Ocular Safety in Patients Using Sildenafil Citrate Therapy for Erectile Dysfunction: Journal of Sexual Medicine Vol 3(1) Jan 2006, 12-27.
  • Lelkes, Z., Alfoldi, P., Erdos, A., & Benedek, G. (1998). Rolipram, an antidepressant that increases the availability of cAMP, transiently enhances wakefulness in rats: Pharmacology, Biochemistry and Behavior Vol 60(4) Aug 1998, 835-839.
  • Lemke, M. R. (1992). Anticyclic manifestation of atopic asthma and schizophrenia: Fortschritte der Neurologie, Psychiatrie Vol 60(12) Dec 1992, 477-480.
  • Lepore, V., & et al. (1985). Dopaminomimetic action of diphenylhydantoin in rat striatum: Effect on homovanillic acid and cyclic AMP levels: Psychopharmacology Vol 86(1-2) May-Jun 1985, 27-30.
  • Lerer, B., Bleich, A., Bennett, E. R., Ebstein, R. P., & et al. (1990). Platelet adenylate cyclase and phospholipase C activity in posttraumatic stress disorder: Biological Psychiatry Vol 27(7) Apr 1990, 735-740.
  • Lerer, B., Ebstein, R. P., Shestatsky, M., Shemesh, Z., & et al. (1987). Cyclic AMP signal transduction in posttraumatic stress disorder: American Journal of Psychiatry Vol 144(10) Oct 1987, 1324-1327.
  • Levy, R. A., Proudfit, H. K., & Goldstein, B. D. (1983). Antinociception following microinjection of dibutyryl cyclic nucleotides into the caudal reticular formation and periaqueductal gray of the rat brain: Pharmacology, Biochemistry and Behavior Vol 19(1) Jul 1983, 79-84.
  • Li, S., Chung, E., & Quock, R. M. (2004). Role of Cyclic GMP in Nitrous-Oxide-Induced Anxiolytic-Like Behavior in the Mouse Light-Dark Exploration Test: Behavioral Neuroscience Vol 118(3) Jun 2004, 648-652.
  • Lin, M. T., Chen, C. F., & Chuang, K. S. (1984). Both dopaminergic and adrenergic receptors in the brain are involved in the behavioural excitation induced by dibutyryl 3',5'-adenosine monophosphate and aminophylline in the rat: Neuropharmacology Vol 23(2A) Feb 1984, 129-135.
  • Little, P. J. (1990). Structural requirements for the behavioral effects of cannabinoids in mice and relationship to alterations in cAMP accumulation in the brain: Dissertation Abstracts International.
  • Liu, N.-J., & Gintzler, A. R. (2003). Facilitative interactions between vasoactive intestinal polypeptides and receptor type-selective opioids: Implications for sensory afferent regulation of spinal opioid action: Brain Research Vol 959(1) Jan 2003, 103-110.
  • Lykouras, E. P., & et al. (1978). Plasma cyclic AMP in manic-depressive illness: Acta Psychiatrica Scandinavica Vol 57(5) May 1978, 447-453.
  • Lykouras, E. P., Garelis, E., Varsou, E. K., & Stefanis, C. N. (1979). Physical activity and plasma cyclic adenosine monophosphate levels in manic-depressive patients and healthy adults: American Journal of Psychiatry Vol 136(4-B) Apr 1979, 540-542.
  • Lykouras, L., Markianos, M., Hatzimanolis, J., & Stefanis, C. (1990). The effect of ECT on plasma cyclic nucleotides: A simulated ECT controlled study in melancholic patients: European Archives of Psychiatry & Neurological Sciences Vol 239(6) 1990, 343-346.
  • Lykouras, L., Markianos, M., & Moussas, G. (1988). Plasma cyclic AMP in non-abstinent chronic alcoholics: Relation to clinical parameters: Drug and Alcohol Dependence Vol 21(1) Feb 1988, 7-9.
  • Lynch, W. J., & Taylor, J. R. (2005). Persistent changes in motivation to self-administer cocaine following modulation of cyclic AMP-dependent protein kinase A (PKA) activity in the nucleus accumbens: European Journal of Neuroscience Vol 22(5) Sep 2005, 1214-1220.
  • Ma, W., Yang, L., Li, S., Lin, Y., Wang, X., Zhang, Y., et al. (2002). Changes of cyclic nucleotides in brain of rats induced by acute stress: Chinese Mental Health Journal Vol 16(6) Jun 2002, 371-372.
  • Mandelbaum, D. E. (1981). Studies of the role of cyclic AMP and protein phosphorylation in the mediation of food arousal in Aplysia: Dissertation Abstracts International.
  • Manier, D. H., Shelton, R. C., Ellis, T. C., Peterson, C. S., Eiring, A., & Sulser, F. (2000). Human fibroblasts as a relevant model to study signal transduction in affective disorders: Journal of Affective Disorders Vol 61(1-2) Dec 2000, 51-58.
  • Mann, J. J., Halper, J. P., Wilner, P. J., Sweeney, J. A., Mieczkowski, T. A., Chen, J.-S., et al. (1997). Subsensitivity of adenylyl cyclase-coupled receptors on mononuclear leukocytes from drug-free inpatients with a major depressive episode: Biological Psychiatry Vol 42(10) Nov 1997, 859-870.
  • Manuel-Apolina, L., & Meneses, A. (2004). 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production: Behavioural Brain Research Vol 148(1-2) Jan 2004, 179-184.
  • Marcourakis, T., Gorenstein, C., de Almeida Prado, E. B., Ramos, R. T., Glezer, I., Bernardes, C. S., et al. (2002). Panic disorder patients have reduced cyclic AMP in platelets: Journal of Psychiatric Research Vol 36(2) Mar-Apr 2002, 105-110.
  • Masana, M. I., Bitran, J. A., Hsiao, J. K., Mefford, I. N., & et al. (1991). Lithium effects on noradrenergic-linked adenylate cyclase activity in intact rat brain: An in vivo microdialysis study: Brain Research Vol 538(2) Jan 1991, 333-336.
  • Mazzola-Pomietto, P., Azorin, J.-M., Tramoni, V., & Jeanningros, R. (1994). Relation betwen lymphocyte !b-adrenergic responsivity and the severity of depressive disorders: Biological Psychiatry Vol 35(12) Jun 1994, 920-925.
  • McAnelly, L., & Zakon, H. H. (1996). Protein kinase A activation increases sodium current magnitude in the electric organ of Sternopygus: Journal of Neuroscience Vol 16(14) Jul 1996, 4383-4388.
  • McLachlan, C. S., Chen, M. L., Lynex, C. N., Goh, D. L. M., Brenner, S., & Tay, S. K. H. (2007). Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease: Archives of Neurology Vol 64(3) Mar 2007, 456-457.
  • McLean, J. H., Harley, C. W., Darby-King, A., & Yuan, Q. (1999). pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training: Learning & Memory Vol 6(6) Nov-Dec 1999, 608-618.
  • Mehta, C. S., & Strada, S. J. (1994). Effects of acute and continuous administration of morphine on the cyclic AMP response induced by norepinephrine in rat brain slices: Life Sciences Vol 55(1) 1994, 35-42.
  • Memo, M., Lucchi, L., Spano, P. F., & Trabucchi, M. (1980). Aging process affects a single class of dopamine receptors: Brain Research Vol 202(2) Dec 1980, 488-492.
  • Mench, J. A., Van Tienhoven, A., Kasovitz, B., Huber, A., & et al. (1986). Behavioral effects of intraventricular dibutyryl cyclic AMP in domestic fowl: Physiology & Behavior Vol 37(3) 1986, 483-488.
  • Mercier, D., Falardeau, P., & Levesque, D. (2001). Autoreceptor preference of dopamine D-sub-2 receptor agonists correlates with preferential coupling to cyclic AMP: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(7) May 2001, 1473-1479.
  • Miletic, G., Pankratz, M. T., & Miletic, V. (2002). Increases in the phosphorylation of cyclic AMP response element binding protein (CREB) and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats: Pain Vol 99(3) Oct 2002, 493-500.
  • Miller, J. C., Jimenez, P., & Mathe, A. A. (2007). Restraint stress influences AP-1 and CREB DNA-binding activity induced by chronic lithium treatment in the rat frontal cortex and hippocampus: International Journal of Neuropsychopharmacology Vol 10(5) Oct 2007, 609-619.
  • Minami, T., Oomura, Y., Nabekura, J., & Fukuda, A. (1990). 17!b-Estradiol depolarization of hypothalamic neurons is mediated by cyclic AMP: Brain Research Vol 519(1-2) Jun 1990, 301-307.
  • Miserendino, M. J. D., & Nestler, E. J. (1995). Behavioral sensitization to cocaine: Modulation by the cyclic AMP system in the nucleus accumbens: Brain Research Vol 674(2) Mar 1995, 299-306.
  • Misra, K., Roy, A., & Pandey, S. C. (2001). Effects of voluntary ethanol intake on the expression of Ca-super(2+)/calmodulin-dependent protein kinase IV and on CREB expression and phosphorylation in the rat nucleus accumbens: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(18) Dec 2001, 4133-4137.
  • Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., & Nabeshima, T. (2002). CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning: Behavioural Brain Research Vol 133(2) Jul 2002, 135-141.
  • Montezinho, L. P., Mork, A., Duarte, C. B., Penschuck, S., Geraldes, C. F. G. C., & Castro, M. M. C. A. (2007). "Effects of mood stabilizers on the inhibition of adenlyate cyclase via dopamine D-sub-2-like receptors": Erratum: Bipolar Disorders Vol 9(5) Aug 2007, 549.
  • Montezinho, L. P., Mork, A., Duarte, C. B., Penschuck, S., Geraldes, C. F. G. C., & Castro, M. M. C. A. (2007). Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D-sub-2-like receptors: Bipolar Disorders Vol 9(3) May 2007, 290-297.
  • Mori, S., Tardito, D., Dorigo, A., Zanardi, R., Smeraldi, E., Racagni, G., et al. (1998). Effects of lithium on cAMP-dependent protein kinase in rat brain: Neuropsychopharmacology Vol 19(3) Sep 1998, 233-240.
  • Mork, A., & Geisler, A. (1993). Effects of minocycline on accumulation of cyclic AMP in cerebral cortex of rat: A comparison with lithium: Neuropharmacology Vol 32(8) Aug 1993, 793-798.
  • Munck, S., Bedner, P., Bottaro, T., & Harz, H. (2004). Spatiotemporal properties of cytoplasmic cyclic AMP gradients can alter the turning behaviour of neuronal growth cones: European Journal of Neuroscience Vol 19(4) Feb 2004, 791-797.
  • Nair, A., Vadodaria, K. C., Banerjee, S. B., Benekareddy, M., Dias, B. G., Duman, R. S., et al. (2007). Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus: Neuropsychopharmacology Vol 32(7) Jul 2007, 1504-1519.
  • Nalepa, I., Manier, D. H., Gillespie, D. D., Rossby, S. P., Schmidt, D. E., & Sulser, F. (1998). Lack of beta adrenoceptor desensitization in brain following the dual noradrenaline and serotonin reuptake inhibitor venlafaxine: European Neuropsychopharmacology Vol 8(3) Aug 1998, 227-232.
  • Nathanson, J. A., & Greengard, P. (1977). "Second messengers" in the brain: Scientific American Vol 237(2) Aug 1977, 108-119.
  • Natsukari, N., Kulaga, H., Baker, I., Wyatt, R. J., & Masserano, J. M. (1997). Increased cyclic AMP response to forskolin in Epstein-Barr virus-transformed human B-lymphocytes derived from schizophrenics: Psychopharmacology Vol 130(3) Apr 1997, 235-241.
  • Newman, M. E., & Hamburger-Bar, R. (1985). Vasopressin inhibition of cyclic AMP accumulation and effects on the learned response in inbred mouse strains: Life Sciences Vol 37(21) Nov 1985, 2037-2042.
  • Newman, M. E., Lipot, M., & Lerer, B. (1987). Differential effects of chronic administration of desipramine on the cyclic AMP response in cortical slices and membranes in the rat: Neuropharmacology Vol 26(8) Aug 1987, 1127-1130.
  • Nguyen, P. V., & Kandel, E. R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices: Journal of Neuroscience Vol 16(10) May 1996, 3189-3198.
  • Nibuya, M., Nestler, E. J., & Duman, R. S. (1996). Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus: Journal of Neuroscience Vol 16(7) Apr 1996, 2365-2372.
  • Nicot, A., Lelievre, V., Tam, J., Waschek, J. A., & DiCicco-Bloom, E. (2002). Pituitary Adenylate Cyclase-Activating Polypeptide and Sonic Hedgehog Interact to Control Cerebellar Granule Precursor Cell Proliferation: Journal of Neuroscience Vol 22(21) Nov 2002, 9244-9254.
  • Nikander, P., & Pekkanen, L. (1977). An inborn alcohol tolerance in alcohol-preferring rats: The lack of relationship between tolerance to ethanol and the brain microsomal (Na-super(+)K-super(+)) ATPase activity: Psychopharmacology Vol 51(3) 1977, 219-223.
  • Nikitin, V. P., & Kozyrev, S. A. (2000). The effects of cAMP on the excitability and responses of defensive behavior command neurons in the common snail evoked by sensory stimuli: Neuroscience and Behavioral Physiology Vol 30(4) Jul-Aug 2000, 441-447.
  • Nistico, G. (1977). Effects of GABA, GABOB and some anticonvulsant drugs on dibutyryl cyclic AMP evoked seizures: International Journal of Clinical Pharmacology & Biopharmacy Vol 15(1) Jan 1977, 19-22.
  • Ocorr, K. A., Tabata, M., & Byrne, J. H. (1986). Stimuli that produce sensitization lead to elevation of cyclic AMP levels in tail sensory neurons of Aplysia: Brain Research Vol 371(1) Apr 1986, 190-192.
  • Odagaki, Y., Garcia-Sevilla, J. A., Huguelet, P., La Harpe, R., Koyama, T., & Guimon, J. (2001). Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims: Brain Research Vol 898(2) Apr 2001, 224-231.
  • Ofuji, M., Kaiya, H., Nozaki, M., & Tsurumi, K. (1989). Platelet prostaglandin E-sub-1 hyposensitivity in schizophrenia: Reduction of prostaglandin E-sub-1--or forskolin-stimulated cyclic AMP response in platelets: Life Sciences Vol 45(22) 1989, 2135-2140.
  • Ogasahara, S., Taguchi, Y., & Wada, H. (1981). Changes in the levels of cyclic nucleotides in rat brain during the sleep-wakefulness cycle: Brain Research Vol 213(1) May 1981, 163-171.
  • Oliveira, A. M. M., Abel, T., Brindle, P. K., & Wood, M. A. (2006). Differential Role for CBP and p300 CREB-Binding Domain in Motor Skill Learning: Behavioral Neuroscience Vol 120(3) Jun 2006, 724-729.
  • Onoue, S., Endo, K., Ohshima, K., Yajima, T., & Kashimoto, K. (2002). The neuropeptide PACAP attenuates beta -amyloid (1-42)-induced toxicity in PC12 cells: Peptides Vol 23(8) Aug 2002, 1471-1478.
  • Painter, P. C., Howley, E. T., & Liles, J. N. (1982). Change in plasma cAMP and catecholamines in men subjected to the same relative amount of physical work stress: Aviation, Space, and Environmental Medicine Vol 53(7) Jul 1982, 683-686.
  • Pandey, G. N., Dwivedi, Y., Ren, X., Rizavi, H. S., Roberts, R. C., & Conley, R. R. (2007). Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: Specific decrease in the prefrontal cortex but not the hippocampus: International Journal of Neuropsychopharmacology Vol 10(5) Oct 2007, 621-629.
  • Pandey, G. N., Dysken, M. W., Garver, D. L., & Davis, J. M. (1979). Beta-adrenergic receptor function in affective illness: American Journal of Psychiatry Vol 136(5) May 1979, 675-678.
  • Pandey, S. C., Mittal, N., & Silva, A. J. (2000). Blockade of the cyclic AMP-responsive element DNA binding in the brain of CREBDelta /alpha mutant mice: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(11) Aug 2000, 2577-2580.
  • Pandey, S. C., Roy, A., & Zhang, H. (2003). The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats: Alcoholism: Clinical and Experimental Research Vol 27(3) Mar 2003, 396-409.
  • Panter, S. S. (1982). Cyclic AMP-dependent and -independent phosphorylations of mouse brain proteins during the acquisition of morphine tolerance and physical dependence: Dissertation Abstracts International.
  • Perez, J., Tardito, D., Mori, S., Racagni, G., Smeraldi, E., & Zanardi, R. (1999). Abnormalities of cyclic adenosine monophosphate signaling in platelets from untreated patients with bipolar disorder: Archives of General Psychiatry Vol 56(3) Mar 1999, 248-253.
  • Perez, J., Tardito, D., Mori, S., Racagni, G., Smeraldi, E., & Zanardi, R. (2000). Abnormalities of cAMP signaling in affective disorders: Implications for pathophysiology and treatment: Bipolar Disorders Vol 2(1) Mar 2000, 27-36.
  • Perez, J., Tardito, D., Mori, S., Racagni, G., Smeraldi, E., & Zanardi, R. (2000). Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder: Journal of Psychiatric Research Vol 34(2) Mar-Apr 2000, 99-104.
  • Perez, J., Tinelli, D., Bianchi, E., Brunello, N., & et al. (1991). cAMP binding proteins in the rat cerebral cortex after administration of selective 5-HT and NE reuptake blockers with antidepressant activity: Neuropsychopharmacology Vol 4(1) Jan 1991, 57-64.
  • Perlis, R. H., Purcell, S., Fava, M., Fagerness, J., Rush, A. J., Trivedi, M. H., et al. (2007). Association between treatment-emergrent suicidal ideation with citalopram and polymorphisms near cyclic adenosine monophosphate response element binding protein in the STAR*D study: Archives of General Psychiatry Vol 64(6) Jun 2007, 689-697.
  • Perlow, M. J., & et al. (1977). Daily fluctuation in the concentration of cAMP in the conscious primate brain: Brain Research Vol 126(2) 1977, 391-396.
  • Pilc, A., & Legutko, B. (1995). The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(1) Dec 1995, 85-88.
  • Pollock, J. D. (1986). Potassium channel modulation by serotonin and cyclic-amp in pleural sensory neurons of Aplysia: A neural mechanism for synaptic plasticity and learning: Dissertation Abstracts International.
  • Post, R. M., Cramer, H., & Goodwin, F. K. (1977). Cyclic AMP in cerebrospinal fluid of manic and depressive patients: Psychological Medicine Vol 7(4) Nov 1977, 599-605.
  • Post, R. M., & et al. (1982). Effect of carbamazepine on cyclic nucleotides in CSF of patients with affective illness: Biological Psychiatry Vol 17(9) Sep 1982, 1037-1044.
  • Racagni, G., Tinelli, D., Bianchi, E., Brunello, N., & Perez, J. (1991). cAMP-dependent binding proteins and endogenous phosphorylation after antidepressant treatment. New York, NY: Oxford University Press.
  • Reiners, J., Schmidt, M., Packer, J., Unger, L., & Wernet, W. (2007). A polymorphism linked to bipolar affective disorder does not alter the CRE activity of constitutively activated trace amine receptor 4: Molecular Psychiatry Vol 12(10) Oct 2007, 900-902.
  • Renger, J. J., Ueda, A., Atwood, H. L., Govind, C. K., & Wu, C.-F. (2000). Role of cAMP cascade in synaptic stability and plasticity: Ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants: Journal of Neuroscience Vol 20(11) Jun 2000, 3980-3992.
  • Ribeiro, M. J., Serfozo, Z., Papp, A., Kemenes, I., O'Shea, M., Yin, J. C. P., et al. (2003). Cyclic AMP response element-binding (CREB)-like proteins in a molluscan brain: Cellular localization and learning-induced phosphorylation: European Journal of Neuroscience Vol 18(5) Sep 2003, 1223-1234.
  • Robinson, S. E., Berney, S., Mishra, R., & Sulser, F. (1979). The relative role of dopamine and norepinephrine receptor blockade in the action of antipsychotic drugs: Metoclopramide, thiethylperazine, and molindone as pharmacological tools: Psychopharmacology Vol 64(2) 1979, 141-147.
  • Romano, A., Delorenzi, A., Pedreira, M. E., Tomsic, D., & Maldonado, H. (1996). Acute administration of a permeant analog of cAMP and a phosphodiesterase inhibitor improve long-term habituation in the crab Chasmagnathus: Behavioural Brain Research Vol 75(1-2) Feb 1996, 119-125.
  • Romano, A., Locatelli, F., Delorenzi, A., Pedreira, M. E., & Maldonado, H. (1996). Effects of activation and inhibition of cAMP-dependent protein kinase on long-term habituation in the crab Chasmagnathus: Brain Research Vol 735(1) Sep 1996, 131-140.
  • Rosen, R. C., & McKenna, K. E. (2002). PDE-5 inhibition and sexual response: Pharmacological mechanisms and clinical outcomes: Annual Review of Sex Research Vol 13 2002, 36-88.
  • Rotrosen, J., & et al. (1978). Reduced PGE-sub-1 stimulated -3H-cAMP accumulation in platelets from schizophrenics: Life Sciences Vol 23(20) Nov 1978, 1989-1996.
  • Ruhmann, A., Chapman, J., Higelin, J., Butscha, B., & Dautzenberg, F. M. (2002). Design, synthesis and pharmacological characterization of new highly selective CRF-sub-2 antagonists: Development of superscript 1superscript 2superscript 3I-K31440 as a potential SPECT ligand: Peptides Vol 23(3) Mar 2002, 453-460.
  • Sakaguchi, H., Wada, K., Maekawa, M., Watsuji, T., & Hagiwara, M. (1999). Song-induced phosphorylation of cAMP response element-binding protein in the songbird brain: Journal of Neuroscience Vol 19(10) May 1999, 3973-3981.
  • Sanchez-Alavez, M., Gomez-Chavarin, M., Navarro, L., Jimenez-Anguiano, A., Murillo-Rodriguez, E., Prado-Alcala, R. A., et al. (2000). Cortistatin modulates memory processes in rats: Brain Research Vol 858(1) Mar 2000, 78-83.
  • Sasaki, H., Hashimoto, K., Maeda, Y., Inada, T., & et al. (1995). Rolipram, a selective c-AMP phosphodiesterase inhibitor suppresses oro-facial dyskinetic movements in rats: Life Sciences Vol 56(25) May 1995, PL443-PL447.
  • Schaefer, M. L., Wong, S. T., Wozniak, D. F., Muglia, L. M., Liauw, J. A., Zhuo, M., et al. (2000). Altered stress-induced anxiety in adenylyl cyclase Type VIII-deficient mice: Journal of Neuroscience Vol 20(13) Jul 2000, 4809-4820.
  • Schneider, D. R., Felt, B. T., & Goldman, H. (1982). Desglycyl-8-arginine vasopressin affects regional mouse brain cyclic AMP content: Pharmacology, Biochemistry and Behavior Vol 16(1) Jan 1982, 139-143.
  • Schubert, P., Ogata, T., Rudolphi, K., Marchini, C., McRae, A., & Ferroni, S. (1997). Support of homeostatic glial cell signaling: A novel therapeutic approach by propentofylline. New York, NY: New York Academy of Sciences.
  • Schwaninger, M., Weisbrod, M., & Knepel, W. (1997). Progress in defining the mechanism of action of antidepressants: Across receptors and into gene transcription: CNS Drugs Vol 8(3) Sep 1997, 237-243.
  • Self, D. W., & Nestler, E. J. (1995). Molecular mechanisms of drug reinforcement and addiction: Annual Review of Neuroscience Vol 18 1995, 463-495.
  • Shelton, R. C., Manier, D. H., Peterson, C. S., Ellis, T. C., & Sulser, F. (1999). Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers: International Journal of Neuropsychopharmacology Vol 2(3) Sep 1999, 187-192.
  • Shen, A., & et al. (1977). Cyclic adenosine 3',5'-monophosphate, adenylate cyclase and physical dependence on ethanol: Studies with tranylcypromine: Drug and Alcohol Dependence Vol 2(5-6) Sep-Nov 1977, 431-440.
  • Sheu, M.-J., Sribanditmongkol, P., Santosa, D. N., & Tejwani, G. A. (1995). Inhibition of morphine tolerance and dependence by diazepam and its relation to cyclic AMP levels in discrete rat brain regions and spinal cord: Brain Research Vol 675(1-2) Mar 1995, 31-37.
  • Shotwell, S. L. (1982). A biochemical and genetic analysis of the cyclic AMP phosphodiesterase defect in dunce, a memory mutant of Drosophila: Dissertation Abstracts International.
  • Siever, L. J., Kafka, M. S., Targum, S., & Lake, C. R. (1984). Platelet alpha-adrenergic binding and biochemical responsiveness in depressed patients and controls: Psychiatry Research Vol 11(4) 1984, 287-302.
  • Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory: Annual Review of Neuroscience Vol 21 1998, 127-148.
  • Silva, A. J., & Murphy, G. G. (1999). cAMP and memory: A seminal lesson from Drosophila and Aplysia: Brain Research Bulletin Vol 50(5-6) Nov-Dec 1999, 441-442.
  • Silvestre, J. S., Fernandez, A. G., & Palacios, J. M. (1999). Effects of rolipram on the elevated plus-maze test in rats: A preliminary study: Journal of Psychopharmacology Vol 13(3) 1999, 274-277.
  • Silvestre, J. S., Fernandez, A. G., & Palacios, J. M. (1999). Preliminary evidence for an involvement of the cholinergic system in the sedative effects of rolipram in rats: Pharmacology, Biochemistry and Behavior Vol 64(1) Sep 1999, 1-5.
  • Singer, H. S., Searles, C. D., Hahn, I.-h., March, J. L., & et al. (1990). The effect of aluminum on markers for synaptic neurotransmission, cyclic AMP, and neurofilaments in a neuroblastomaxglioma hybridoma (NG108-15): Brain Research Vol 528(1) Sep 1990, 73-79.
  • Sprugel, W., Mitznegg, P., & Heim, F. (1977). The influence of caffeine and theobromine on locomotive activity and the brain cGMP/cAMP ratio in white mice: Biochemical Pharmacology Vol 26(18) Sep 1977, 1723-1724.
  • Stefanis, C. N., Lykouras, E., Garelis, E., & Varsou, E. (1977). Cyclic AMP in the plasma of chronic schizophrenics, before and after treatment: Progress in Neuro-Psychopharmacology Vol 1(3-4) 1977, 323-327.
  • Stewart, R. J., Chen, B., Dowlatshahi, D., MacQueen, G. M., & Young, L. T. (2001). Abnormalities in the cAMP signaling pathway in post-mortem brain tissue from the Stanley Neuropathology Consortium: Brain Research Bulletin Vol 55(5) Jul 2001, 625-629.
  • Stone, E. A. (1978). Effect of stress on norepinephrine-stimulated cyclic AMP in brain slices: Pharmacology, Biochemistry and Behavior Vol 8(5) May 1978, 583-591.
  • Stone, E. A. (1987). Central cyclic-AMP-linked noradrenergic receptors: New findings on properties as related to the actions of stress: Neuroscience & Biobehavioral Reviews Vol 11(4) Win 1987, 391-398.
  • Stone, E. A., Platt, J. E., Herrera, A. S., & Kirk, K. L. (1986). Effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices: Journal of Pharmacology and Experimental Therapeutics Vol 237(3) Jun 1986, 702-707.
  • Stone, E. A., Platt, J. E., Trullas, R., & Slucky, A. V. (1984). Reduction of the cAMP response to norepinephrine in rat cerebral cortex following repeated restraint stress: Psychopharmacology Vol 82(4) Mar 1984, 403-405.
  • Stone, E. A., Slucky, A. V., Platt, J. E., & Trullas, R. (1985). Reduction of the cyclic adenosine 3',5'-monophosphate response to catecholamines in rat brain slices after repeated restraint stress: Journal of Pharmacology and Experimental Therapeutics Vol 233(2) May 1985, 382-388.
  • Storozheva, Z. I., Danilova, R. A., & Libinzon, R. E. (1982). Influence of cyclic AMPh on elaboration of active avoidance in rats: Zhurnal Vysshei Nervnoi Deyatel'nosti Vol 32(3) 1982, 563-565.
  • Sulser, F. (2002). The role of CREB and other transcription factors in the pharmacotherapy and etiology of depression: Annals of Medicine Vol 34(5) Jul 2002, 348-356.
  • Suzdak, P. D., & Browne, R. G. (1985). The effect of chronic in vivo infusion of forskolin on noradrenergic receptor sensitivity: Psychopharmacology Vol 87(4) Dec 1985, 464-467.
  • Tardito, D., Tura, G. B., Bocchio, L., Bignotti, S., Pioli, R., Racagni, G., et al. (2000). Abnormal levels of cAMP-dependent protein kinase regulatory subunits in platelets from schizophrenic patients: Neuropsychopharmacology Vol 23(2) Aug 2000, 216-219.
  • Tardito, D., Zanardi, R., Racagni, G., Manzoni, T., & Perez, J. (2002). The protein kinase A in platelets from patients with panic disorder: European Neuropsychopharmacology Vol 12(5) Oct 2002, 483-487.
  • Taubenfeld, S. M., Wiig, K. A., Monti, B., Dolan, B., Pollonini, G., & Alberini, C. M. (2001). Fornix-dependent induction of hippocampal CCAAT enhancer-binding proteinbeta and delta co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation: Journal of Neuroscience Vol 21(1) Jan 2001, 84-91.
  • Tavalin, S. J., Colledge, M., Hell, J. W., Langeberg, L. K., Huganir, R. L., & Scott, J. D. (2002). Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression: Journal of Neuroscience Vol 22(8) Apr 2002, 3044-3051.
  • Terry, R. L. (1995). Pharmacology of noradrenergic-mediated changes in pineal gland n-acetyltransferase activity in adult and developing rats. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Tolliver, B. K., Ho, L. B., Reid, M. S., & Berger, S. P. (1996). Evidence for involvement of ventral tegmental area cyclic AMP systems in behavioral sensitization to psychostimulants: Journal of Pharmacology and Experimental Therapeutics Vol 278(1) Jul 1996, 411-420.
  • Toyota, T., Yamada, K., Saito, K., Detera-Wadleigh, S. D., & Yoshikawa, T. (2002). Association analysis of adenlyate cycle type 9 gene using pedigree disequilibrium test in bipolar disorder: Molecular Psychiatry Vol 7(5) 2002, 450-452.
  • Troncone, L. R., Braz, S., Benedito, M. A., & Tufik, S. (1986). REM sleep deprivation induces a decrease in norepinephrine-stimulated -3H-cyclic AMP accumulation in slices from rat brain: Pharmacology, Biochemistry and Behavior Vol 25(1) Jul 1986, 223-225.
  • Ullrich, I. H., & Lizarralde, G. (1977). Patterns of cyclic 3'5'-adenosine monophosphate excretion in parathyroid dysfunction: Chronobiologia Vol 4(3) Jul-Sep 1977, 199-204.
  • Uno, T., Wang, J., Mitsui, K., Umetani, K., Tamura, K., & Tsurugi, K. (2002). Ultradian rhythm of trehalose levels coupled to heat resistance in continuous cultures of the yeast Saccharomyces cerevisiae: Chronobiology International Vol 19(2) 2002, 361-375.
  • Uphouse, L., Maswood, S., & Jackson, A. (2000). Factors elevating cAMP attenuate the effects of 8-OH-DPAT on lordosis behavior: Pharmacology, Biochemistry and Behavior Vol 66(2) Jun 2000, 383-388.
  • Vagell, M. E., McGinnis, M. Y., Possidente, B. P., Narasimhan, V. N., & et al. (1991). Olfactory bulbectomy increases basal suprachiasmatic cyclic AMP levels in male rats: Brain Research Bulletin Vol 27(6) Dec 1991, 839-842.
  • Vesely, D. L., Lehotay, D. C., & Levey, G. S. (1978). Effects of ethanol on myocardial guanylate and adenylate cyclase activity and on cyclic GMP and AMP levels: Journal of Studies on Alcohol Vol 39(5) May 1978, 842-847.
  • Vetulani, J., Leith, N. J., Stawarz, R. J., & Sulser, F. (1977). Effect of clonidine on the noradrenergic cyclic AMP generating system in the limbic forebrain and on medial forebrain bundle self-stimulation behavior: Experientia Vol 33(11) Nov 1977, 1490-1491.
  • Volicer, L., Greene, L., & Sinex, F. M. (1985). Epinephrine-induced cyclic AMP production in skin fibroblasts from patients with dementia of Alzheimer type and controls: Neurobiology of Aging Vol 6(1) Spr 1985, 35-38.
  • von Gall, C., Schneider-Huther, I., Pfeffer, M., Dehghani, F., Korf, H. W., & Stehle, J. H. (2001). Clock Gene Protein mPER1 is Rhythmically Synthesized and Under cAMP Control in the Mouse Pineal Organ: Journal of Neuroendocrinology Vol 13(4) Apr 2001, 313-336.
  • Vonvoigtlander, P. F., & Losey, E. G. (1977). Prostaglandin E-sub-2, cyclic adenosine monophosphate and morphine analgesia: Brain Research Vol 128(2) 1977, 275-283.
  • Wachtel, H. (1983). Potential antidepressant activity of rolipram and other selective cyclic adenosine 3',5'-monophosphate phosphodiesterase inhibitors: Neuropharmacology Vol 22(3A) Mar 1983, 267-272.
  • Wachtel, H., & Loschmann, P.-A. (1986). Effects of forskolin and cyclic nucleotides in animal models predictive of antidepressant activity: Interactions with rolipram: Psychopharmacology Vol 90(4) Nov 1986, 430-435.
  • Waller, D. G., Albano, J. D., & Edwards, J. G. (1987). Urinary cyclic AMP response to bovine parathyroid hormone during treatment with neuroleptics: Human Psychopharmacology: Clinical and Experimental Vol 2(2) Jun 1987, 105-107.
  • Wand, G., Levine, M., Zweifel, L., Schwindlinger, W., & Abel, T. (2001). The cAMP-protein kinase A signal transduction pathway modulates ethanol consumption and sedative effects of ethanol: Journal of Neuroscience Vol 21(14) Jul 2001, 5297-5303.
  • Wang, J. F., Ren, M. F., Xue, J. C., & Han, J. S. (1993). Cyclic AMP mediates mu and delta, but not kappa opioid analgesia in the spinal cord of the rat: Life Sciences Vol 52(24) 1993, 1955-1960.
  • Weiner, M., & Olson, J. W. (1977). Single-dose tolerance to the behavioral effects of dibutyryl cyclic AMP in mice: Psychopharmacology Vol 54(1) 1977, 61-65.
  • Weitbrecht, W.-U., & Cramer, H. (1980). Depression of cyclic AMP and cyclic GMP in the cerebrospinal fluid of rats after acute administration of ethanol: Brain Research Vol 200(2) Nov 1980, 478-480.
  • Weizmann, R., Gur, E., Laor, N., Reiss, A., & et al. (1994). Platelet adenylate cyclase activity in Israeli victims of Iraqi Scud missile attacks with post-traumatic stress disorder: Psychopharmacology Vol 114(3) Apr 1994, 509-512.
  • Williams, B. M. (2001). The effect of environmental enrichment on spatial learning and expression of cyclic AMP response element binding protein from mouse hippocampus. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Williams, B. M., Luo, Y., Ward, C., Redd, K., Gibson, R., Kuczaj, S. A., et al. (2001). Environmental enrichment: Effects on spatial memory and hippocampal CREB immunoreactivity: Physiology & Behavior Vol 73(4) Jul 2001, 649-658.
  • Woodman, D. D., & Hinton, J. W. (1978). Anomalies of cyclic AMP excretion in some abnormal offenders: Biological Psychology Vol 7(1-2) Sep 1978, 103-108.
  • Wu, P. H., & Phillis, J. W. (1984). Uptake by central nervous tissues as a mechanism for the regulation of extracellular adenosine concentrations: Neurochemistry International Vol 6(5) 1984, 613-632.
  • Yamamoto, M., Pohli, S., Durany, N., Ozawa, H., Saito, T., Boissl, K. W., et al. (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: Evidence for a specific role of cAMP signaling in the human addictive brain: Brain Research Vol 895(1-2) Mar 2001, 233-237.
  • Yamamoto-Sasaki, M., Ozawa, H., Saito, T., Rosler, M., & Riederer, P. (1999). Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type: Brain Research Vol 824(2) Apr 1999, 300-303.
  • Yang, Y., Akiyama, H., Fenton, J. W., II, & Brewer, G. J. (1997). Thrombin receptor on rat primary hippocampal neurons: Coupled calcium and cAMP responses: Brain Research Vol 761(1) Jun 1997, 11-18.
  • Ye, Y. (1996). Regulation of rolipram-sensitive, low-km cyclic amp phosphodiesterase by noradrenergic neurons in rat cerebral cortex. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Young, L. T., Bezchlibnyk, Y. B., Chen, B., Wang, J.-F., & MacQueen, G. M. (2004). Amygdala Cyclic Adenosine Monophosphate Response Element Binding Protein Phosphorylation in Patients with Mood Disorders: Effects of Diagnosis, Suicide, and Drug Treatment: Biological Psychiatry Vol 55(6) Mar 2004, 570-577.
  • Zanardi, R., Racagni, G., Smeraldi, E., & Perez, J. (1997). Differential effects of lithium on platelet protein phosphorylation in bipolar patients and healthy subjects: Psychopharmacology Vol 129(1) Jan 1997, 44-47.
  • Zhadan, P. M. (1992). Cyclic nucleotides in the regulation of mechanical activity in the abdominal sensory organ of a bivalve mollusc: Sensory Systems Vol 6(1) Jan-Mar 1992, 13-20.
  • Zhang, H.-T., Crissman, A. M., Dorairaj, N. R., Chandler, L. J., & O'Donnell, J. M. (2000). Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism: Neuropsychopharmacology Vol 23(2) Aug 2000, 198-204.
  • Zhang, H.-T., Huang, Y., Jin, S. L. C., Frith, S. A., Suvarna, N., Conti, M., et al. (2002). Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme: Neuropsychopharmacology Vol 27(4) Oct 2002, 587-595.
  • Zhao, A. Z., Huan, J.-N., Gupta, S., Pal, R., & Sahu, A. (2002). A phosphatidylinositol 3-kinase-phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding: Nature Neuroscience Vol 5(8) Aug 2002, 727-728.
  • Zhao, W.-Q., Polya, G. M., Wnag, B. H., Gibbs, M. E., & et al. (1995). Inhibitors of cAMP-dependent protein kinase impair long-term memory formation in day-old chicks: Neurobiology of Learning and Memory Vol 64(2) Sep 1995, 106-118.
  • Zhdanova, I. V., & Giorgetti, M. (2002). Melatonin alters behavior and cAMP levels in nucleus accumbens induced by cocaine treatment: Brain Research Vol 956(2) Nov 2002, 323-331.
  • Zhong, Y., & Wu, C.-f. (1991). Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade: Science Vol 251(4990) Jan 1991, 198-201.
  • Zimmer, R., Cramer, H., Athen, D., & Beckmann, H. (1982). Changes in cerebrospinal fluid cyclic nucleotides in alcohol-dependent patients suffering from delirium tremens: Biological Psychiatry Vol 17(7) Jul 1982, 837-843.
  • Zohar, J., & et al. (1978). Clinical correlates of CSF cyclic nucleotides in schizophrenia: American Journal of Psychiatry Vol 135(2) Feb 1978, 253-255.
  • Zubenko, G. S., Hughes, H. B., III, Stiffler, J. S., Brechbiel, A., Zubenko, W. N., Maher, B. S., et al. (2003). Sequence variations in CREB1 cosegregate with depressive disorders in women: Molecular Psychiatry Vol 8(6) 2003, 611-618.

Additional images

This page uses Creative Commons Licensed content from Wikipedia (view authors).