Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Animals · Animal ethology · Comparative psychology · Animal models · Outline · Index


Electric eels are fish capabale of generating an electrical field.

An electric fish is a fish that can generate electric fields. It is said to be electrogenic; a fish that has the ability to detect electric fields is said to be electroreceptive. Most fish that are electrogenic are also electroreceptive. Electric fish species can be found both in the sea and in freshwater rivers of South America and Africa. Many fish such as sharks, rays and catfishes can detect electric fields, and are thus electroreceptive, but as they cannot generate an electric field they are not classified as electric fish. Most common bony fish (teleosts), including most fish kept in aquaria or caught for food, are neither electrogenic nor electroreceptive.

Strongly and weakly electric fish

Electric fish produce their electric fields from a specialized structure called an electric organ. This is made up of modified muscle or nerve cells, which became specialized for producing electric fields. Typically this organ is located in the tail of the electric fish. The electrical output of the organ is called the electric organ discharge (EOD).

Fish that have an EOD that is powerful enough to stun their prey are called strongly electric fish. The amplitude of the signal can range from 10 to 500 volts with a current of up to 1 ampere. Typical examples are the electric eel (Electrophorus electricus; not a true eel but a knifefish), the electric catfishes (family Malapteruridae), and electric rays (order Torpediniformes).

By contrast, weakly electric fish generate a discharge that is typically less than one volt in amplitude. These are too weak to stun prey, but are used for navigation, object detection (electrolocation) and communication with other electric fish (electrocommunication). Some of the best known and most studied examples are Peters' elephantnose fish (Gnathonemus petersi) and the black ghost knifefish (Apteronotus albifrons).

The EOD waveform takes two general forms depending on the species. In some species the waveform is continuous and almost sinusoidal (for example the genera Apteronotus, Eigenmannia and Gymnarchus) and these are said to have a wave-type EOD. In other species, the EOD waveform consists of brief pulses separated by longer gaps (for example Gnathonemus, Gymnotus, Raja) and these are said to have a pulse-type EOD.

Table of electric fish

This is a table of all known electric fish species within fresh water. In salt water there is only one order, the Torpediniformes (electric rays), inside the chondrichthyes that shows species generating even strong electric pulses (genus Torpedo spp., which counts 22 known species).

Taxon Species (348)

(46 species in 13 genera)

Adontosternarchus balaenops, Adontosternarchus clarkae, Adontosternarchus devenanzii, Adontosternarchus sachsi, Apteronotus albifrons, Apteronotus apurensis, Apteronotus bonapspeciesii, Apteronotus brasiliensis, Apteronotus caudimaculosus, Apteronotus cuchillejo, Apteronotus cuchillo, Apteronotus ellisi, Apteronotus eschmeyeri, Apteronotus jurubidae, Apteronotus leptorhynchus, Apteronotus macrolepis, Apteronotus macrostomus, Apteronotus magdalenensis, Apteronotus marauna, Apteronotus mariae, Apteronotus rostratus, Apteronotus spurrellii, Compsaraia compsa, Magosternarchus duccis, Magosternarchus raptor, Megadontognathus cuyuniense, Megadontognathus kaitukaensis, Orthosternarchus tamandua, Parapteronotus hasemani, Platyurosternarchus macrostomus, Porotergus gimbeli, Porotergus gymnotus, Sternarchella curvioperculata, Sternarchella orthos, Sternarchella schotti, Sternarchella sima, Sternarchella terminalis, Sternarchogiton nattereri, Sternarchogiton porcinum, Sternarchorhamphus muelleri, Sternarchorhynchus britskii, Sternarchorhynchus curvirostris, Sternarchorhynchus mesensis, Sternarchorhynchus mormyrus, Sternarchorhynchus oxyrhynchus, Sternarchorhynchus roseni

(29 species in 1 genus)

Gymnotus anguillaris, Gymnotus arapaima, Gymnotus ardilai, Gymnotus bahianus, Gymnotus carapo, Gymnotus cataniapo, Gymnotus choco, Gymnotus coatesi, Gymnotus coropinae, Gymnotus cylindricus, Gymnotus diamantinensis, Gymnotus esmeraldas, Gymnotus henni, Gymnotus inaequilabiatus, Gymnotus javari, Gymnotus jonasi, Gymnotus maculosus, Gymnotus mamiraua, Gymnotus melanopleura, Gymnotus onca, Gymnotus panamensis, Gymnotus pantanal, Gymnotus pantherinus, Gymnotus paraguensis, Gymnotus pedanopterus, Gymnotus stenoleucus, Gymnotus sylvius, Gymnotus tigre, Gymnotus ucamara

(1 species in 1 genus)

Electrophorus electricus

(14 species in 7 genera)

Brachyhypopomus beebei, Brachyhypopomus brevirostris, Brachyhypopomus diazi, Brachyhypopomus janeiroensis, Brachyhypopomus occidentalis, Brachyhypopomus pinnicaudatus, Hypopomus speciesedi, Hypopygus lepturus, Hypopygus neblinae, Microsternarchus bilineatus, Racenisia fimbriipinna, Steatogenys duidae, Steatogenys elegans, Stegostenopos cryptogenes

(15 species in 3 genera)

Gymnorhamphichthys hypostomus, Gymnorhamphichthys petiti, Gymnorhamphichthys rondoni, Gymnorhamphichthys rosamariae, Iracema caiana, Rhamphichthys apurensis, Rhamphichthys atlanticus, Rhamphichthys drepanium, Rhamphichthys hahni, Rhamphichthys lineatus, Rhamphichthys longior, Rhamphichthys marmoratus, Rhamphichthys pantherinus, Rhamphichthys rostratus, Rhamphichthys schomburgki

(28 species in 5 genera)

Archolaemus blax, Distocyclus conirostris, Distocyclus goajira, Eigenmannia humboldtii, Eigenmannia limbata, Eigenmannia macrops, Eigenmannia microstoma, Eigenmannia nigra, Eigenmannia trilineata, Eigenmannia vicentespelaea, Eigenmannia virescens, Rhabdolichops caviceps, Rhabdolichops eastwardi, Rhabdolichops electrogrammus, Rhabdolichops jegui, Rhabdolichops stewspeciesi, Rhabdolichops troscheli, Rhabdolichops zareti, Sternopygus aequilabiatus, Sternopygus arenatus, Sternopygus astrabes, Sternopygus branco, Sternopygus castroi, Sternopygus dariensis, Sternopygus macrurus, Sternopygus obtusirostris, Sternopygus pejeraton, Sternopygus xingu

(1 species in 1 genus)

Gymnarchus niloticus

(203 species in 18 genera)

Boulengeromyrus knoepffleri, Brienomyrus adustus, Brienomyrus brachyistius, Brienomyrus curvifrons, Brienomyrus hopkinsi, Brienomyrus kingsleyae eburneensis, Brienomyrus kingsleyae kingsleyae, Brienomyrus longianalis, Brienomyrus longicaudatus, Brienomyrus niger, Brienomyrus sphekodes, Brienomyrus tavernei, Campylomormyrus alces, Campylomormyrus bredoi, Campylomormyrus cassaicus, Campylomormyrus christyi, Campylomormyrus curvirostris, Campylomormyrus elephas, Campylomormyrus luapulaensis, Campylomormyrus mirus, Campylomormyrus numenius, Campylomormyrus orycteropus, Campylomormyrus phantasticus, Campylomormyrus rhynchophorus, Campylomormyrus tamandua, Campylomormyrus tshokwe, Genyomyrus donnyi, Gnathonemus barbatus, Gnathonemus echidnorhynchus, Gnathonemus longibarbis, Gnathonemus petersii, Heteromormyrus pauciradiatus, Hippopotamyrus aelsbroecki, Hippopotamyrus ansorgii, Hippopotamyrus batesii, Hippopotamyrus castor, Hippopotamyrus discorhynchus, Hippopotamyrus grahami, Hippopotamyrus harringtoni, Hippopotamyrus macrops, Hippopotamyrus macroterops, Hippopotamyrus pappenheimi, Hippopotamyrus paugyi, Hippopotamyrus pictus, Hippopotamyrus psittacus, Hippopotamyrus retrodorsalis, Hippopotamyrus smithersi, Hippopotamyrus szaboi, Hippopotamyrus weeksii, Hippopotamyrus wilverthi, Hyperopisus bebe bebe, Hyperopisus bebe occidentalis, Isichthys henryi, Ivindomyrus opdenboschi, Marcusenius rhodesianus, Marcusenius sanagaensis, Marcusenius schilthuisiae, Marcusenius senegalensis gracilis, Marcusenius senegalensis pfaffi, Marcusenius senegalensis senegalensis, Marcusenius stanleyanus, Marcusenius thomasi, Marcusenius ussheri, Marcusenius victoriae, Marcusenius abadii, Marcusenius annamariae, Marcusenius bentleyi, Marcusenius brucii, Marcusenius cuangoanus, Marcusenius cyprinoides, Marcusenius deboensis, Marcusenius dundoensis, Marcusenius friteli, Marcusenius furcidens, Marcusenius fuscus, Marcusenius ghesquierei, Marcusenius greshoffii, Marcusenius intermedius, Marcusenius kutuensis, Marcusenius leopoldianus, Marcusenius livingstonii, Marcusenius macrolepidotus angolensis, Marcusenius macrolepidotus macrolepidotus, Marcusenius macrophthalmus, Marcusenius mento, Marcusenius meronai, Marcusenius monteiri, Marcusenius moorii, Marcusenius ntemensis, Marcusenius nyasensis, Marcusenius rheni, Mormyrops anguilloides, Mormyrops attenuatus, Mormyrops batesianus, Mormyrops breviceps, Mormyrops caballus, Mormyrops citernii, Mormyrops curtus, Mormyrops curviceps, Mormyrops engystoma, Mormyrops furcidens, Mormyrops intermedius, Mormyrops lineolatus, Mormyrops mariae, Mormyrops masuianus, Mormyrops microstoma, Mormyrops nigricans, Mormyrops oudoti, Mormyrops parvus, Mormyrops sirenoides, Mormyrus bernhardi, Mormyrus caballus asinus, Mormyrus caballus bumbanus, Mormyrus caballus caballus, Mormyrus caballus lualabae, Mormyrus casalis, Mormyrus caschive, Mormyrus cyaneus, Mormyrus felixi, Mormyrus goheeni, Mormyrus hasselquistii, Mormyrus iriodes, Mormyrus kannume, Mormyrus lacerda, Mormyrus longirostris, Mormyrus macrocephalus, Mormyrus macrophthalmus, Mormyrus niloticus, Mormyrus ovis, Mormyrus rume proboscirostris, Mormyrus rume rume, Mormyrus subundulatus, Mormyrus tapirus, Mormyrus tenuirostris, Mormyrus thomasi, Myomyrus macrodon, Myomyrus macrops, Myomyrus pharao, Oxymormyrus boulengeri, Oxymormyrus zanclirostris, Paramormyrops gabonensis, Paramormyrops jacksoni, Petrocephalus ansorgii, Petrocephalus balayi, Petrocephalus bane bane, Petrocephalus bane comoensis, Petrocephalus binotatus, Petrocephalus bovei bovei, Petrocephalus bovei guineensis, Petrocephalus catostoma catostoma, Petrocephalus catostoma congicus, Petrocephalus catostoma haullevillei, Petrocephalus catostoma tanensis, Petrocephalus christyi, Petrocephalus cunganus, Petrocephalus gliroides, Petrocephalus grandoculis, Petrocephalus guttatus, Petrocephalus hutereaui, Petrocephalus keatingii, Petrocephalus levequei, Petrocephalus microphthalmus, Petrocephalus pallidomaculatus, Petrocephalus pellegrini, Petrocephalus sauvagii, Petrocephalus schoutedeni, Petrocephalus simus, Petrocephalus soudanensis, Petrocephalus squalostoma, Petrocephalus sullivani, Petrocephalus tenuicauda, Petrocephalus wesselsi, Pollimyrus adspersus, Pollimyrus brevis, Pollimyrus castelnaui, Pollimyrus isidori fasciaticeps, Pollimyrus isidori isidori, Pollimyrus isidori osborni, Pollimyrus maculipinnis, Pollimyrus marchei, Pollimyrus nigricans, Pollimyrus nigripinnis, Pollimyrus pedunculatus, Pollimyrus petherici, Pollimyrus petricolus, Pollimyrus plagiostoma, Pollimyrus pulverulentus, Pollimyrus schreyeni, Pollimyrus stappersii kapangae, Pollimyrus stappersii stappersii, Pollimyrus tumifrons, Stomatorhinus ater, Stomatorhinus corneti, Stomatorhinus fuliginosus, Stomatorhinus humilior, Stomatorhinus kununguensis, Stomatorhinus microps, Stomatorhinus patrizii, Stomatorhinus polli, Stomatorhinus polylepis, Stomatorhinus puncticulatus, Stomatorhinus schoutedeni, Stomatorhinus walkeri

(11 species in 1 genus)

Malapterurus beninensis, Malapterurus cavalliensis, Malapterurus electricus, Malapterurus leonensis, Malapterurus microstoma, Malapterurus minjiriya, Malapterurus monsembeensis, Malapterurus oguensis, Malapterurus shirensis, Malapterurus tanganyikaensis, Malapterurus tanoensis



  • Bullock, T.H., Heiligenberg, W. (eds) (1986) Electroreception. Wiley, 722 pp.
  • Heiligenberg, W. (1991) Neural nets in electric fish. MIT Press, 179 pp.
  • Moller, P. (1995) Electric Fishes: History and Behavior. Chapman & Hall, 583 pp.


  • Allee, S. J. (2007). Neuroendocrine control of a dynamic communication signal. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Baier, B., & Kramer, B. (2007). Electric communication during courtship and spawning in two sibling species of dwarf stonebasher from southern Africa, Pollimyrus castelnaui and P. marianne (Mormyridae, Teleostei): Evidence for a non species-specific communication code? : Behaviour Vol 144(1) Jan 2007, 115-142.
  • Carlson, B. A. (2003). Single-Unit Activity Patterns in Nuclei That Control the Electromotor Command Nucleus during Spontaneous Electric Signal Production in the Mormyrid Brienomyrus brachyistius: Journal of Neuroscience Vol 23(31) Nov 2003, 10128-10136.
  • Carlson, B. A., & Hopkins, C. D. (2004). Stereotyped temporal patterns in electrical communication: Animal Behaviour Vol 68(4) Oct 2004, 867-878.
  • Carlson, B. A., & Kawasaki, M. (2006). Ambiguous Encoding of Stimuli by Primary Sensory Afferents Causes a Lack of Independence in the Perception of Multiple Stimulus Attributes: Journal of Neuroscience Vol 26(36) Sep 2006, 9173-9183.
  • Chacron, M. J. (2006). Nonlinear Information Processing in a Model Sensory System: Journal of Neurophysiology Vol 95(5) May 2006, 2933-2946.
  • Chacron, M. J., Maler, L., & Bastian, J. (2005). Feedback and Feedforward Control of Frequency Tuning to Naturalistic Stimuli: Journal of Neuroscience Vol 25(23) Jun 2005, 5521-5532.
  • Cowan, N. J., & Fortune, E. S. (2007). The critical role of locomotion mechanics in decoding sensory systems: Journal of Neuroscience Vol 27(5) Jan 2007, 1123-1128.
  • Curtis, C. C., & Stoddard, P. K. (2003). Mate preference in female electric fish, Brachyhypopomus pinnicaudatus: Animal Behaviour Vol 66(2) Aug 2003, 329-336.
  • Deng, T.-S., & Tseng, T.-C. (2000). Evidence of circadian rhythm of electric discharge in Eigenmannia virescens system: Chronobiology International Vol 17(1) 2000, 43-48.
  • Dewsbury, D. A. (1966). Diurnal fluctuations in the discharge frequency of a gymnotid electric fish: Psychonomic Science Vol 6(1) 1966, 35-36.
  • Doiron, B., Chacron, M. J., Maler, L., Longtin, A., & Bastian, J. (2003). Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli: Nature Vol 421(6922) Jan 2003, 539-543.
  • Dunlap, K. D., Castellano, J. F., & Prendaj, E. (2006). Social interaction and cortisol treatment increase cell addition and radial glia fiber density in the diencephalic periventricular zone of adult electric fish, Apteronotus leptorhynchus: Hormones and Behavior Vol 50(1) Jun 2006, 10-17.
  • Dunlap, K. D., & Larkins-Ford, J. (2003). Production of aggressive electrocommunication signals to progressively realistic social stimuli in male Apteronotus leptorhynchus: Ethology Vol 109(3) Mar 2003, 243-258.
  • Dunlap, K. D., Smith, G. T., & Yekta, A. (2000). Temperature dependence of electrocommunication signals and their underlying neural rhythms in weakly electric fish, Apteronotus leptorhynchus: Brain, Behavior and Evolution Vol 55(3) Mar 2000, 152-162.
  • Dunlap, K. D., & Zakon, H. H. (1998). Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens: Hormones and Behavior Vol 34(1) Aug 1998, 30-38.
  • Ellis, L. D., Mehaffey, W. H., Harvey-Girard, E., Turner, R. W., Maler, L., & Dunn, R. J. (2007). SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons: Journal of Neuroscience Vol 27(35) Aug 2007, 9491-9502.
  • Engelmann, J., Bacelo, J., van den Burg, E., & Grant, K. (2006). Sensory and Motor Effects of Etomidate Anesthesia: Journal of Neurophysiology Vol 95(2) Feb 2006, 1231-1243.
  • Fortune, E. S. (2006). The decoding of electrosensory systems: Current Opinion in Neurobiology Vol 16(4) Aug 2006, 474-480.
  • Graff, C., Kaminski, G., Gresty, M., & Ohlman, T. (2004). Fish Perform Spatial Pattern Recognition and Abstraction by Exclusive Use of Active Electrolocation: Current Biology Vol 14(9) May 2004, 818-823.
  • Herfeld, S., & Moller, P. (1998). Effects of 17alpha -methyltestosterone on sexually dimorphic characters in the weakly discharging electric fish, Brienomyrus niger (Gunther, 1866)(Mormyridae): Electric organ discharge, ventral body wall indentation, and anal-fin ray bone expansion: Hormones and Behavior Vol 34(3) Dec 1998, 303-319.
  • Liu, H. (2007). Individual variation and hormonal modulation of sodium channel alpha and beta1 subunits in the electric organ correlate with variation in a social signal. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Macadar, O., & Silva, A. (2007). Electric communication in South American gymnotiform fishes: Revista Latinoamericana de Psicologia Vol 39(1) 2007, 31-45.
  • Mandriota, F. J., Thompson, R. L., & Bennett, M. V. (1965). Classical conditioning of electric organ discharge rate in mormyrids: Science 150(3704) 1965, 1740-1742.
  • Marvit, P. (2000). Behavioral studies of acoustic sensitivity and discrimination in the sonic fish pollimyrus (mormyridae). Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Mehaffey, W. H., Doiron, B., Maler, L., & Turner, R. W. (2005). Deterministic Multiplicative Gain Control with Active Dendrites: Journal of Neuroscience Vol 25(43) Oct 2005, 9968-9977.
  • Paintner, S., & Kramer, B. (2003). Electrosensory basis for individual recognition in a weakly electric, mormyrid fish, Pollimyrus adspersus (Gunther, 1866): Behavioral Ecology and Sociobiology Vol 55(2) Dec 2003, 197-208.
  • Piccolino, M. (2007). The taming of the electric ray: From a wonderful and dreadful "art" to "animal electricity" and "electric battery": Whitaker, Harry (Ed); Smith, C U M (Ed); Finger, Stanley (Ed).
  • Rose, G. J. (2004). Insights into neural mechanisms and evolution of behaviour from electric fish: Nature Reviews Neuroscience Vol 5(12) Dec 2004, 943-951.
  • Sawtell, N. B., Williams, A., Roberts, P. D., von der Emde, G., & Bell, C. C. (2006). Effects of Sensing Behavior on a Latency Code: Journal of Neuroscience Vol 26(32) Aug 2006, 8221-8234.
  • Silva, A., Perrone, R., & Macadar, O. (2007). Environmental, seasonal, and social modulations of basal activity in a weakly electric fish: Physiology & Behavior Vol 90(2-3) Feb 2007, 525-536.
  • Smith, G. T., Allen, A. R., Oestreich, J., & Gammie, S. C. (2005). L-Citrulline Immunoreactivity Reveals Nitric Oxide Production in the Electromotor and Electrosensory Systems of the Weakly Electric Fish, Apteronotus leptorhynchus: Brain, Behavior and Evolution Vol 65(1) Jan 2005, 1-13.
  • Stoddard, P. K., Markham, M. R., Salazar, V. L., & Allee, S. (2007). Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus: Physiology & Behavior Vol 90(1) Jan 2007, 11-20.
  • Szalisznyo, K., Longtin, A., & Maler, L. (2006). Altered sensory filtering and coding properties by synaptic dynamics in the electric sense: Neurocomputing: An International Journal Vol 69(10-12) Jun 2006, 1070-1075.
  • Tallarovic, S. K., & Zakon, H. H. (2005). Electric organ discharge frequency jamming during social interactions in brown ghost knifefish, Apteronotus leptorhynchus: Animal Behaviour Vol 70(6) Dec 2005, 1335-1365.
  • Tan, E. W., Nizar, J. M., Carrera-G, E., & Fortune, E. S. (2005). Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens: Behavioural Brain Research Vol 164(1) Oct 2005, 83-92.
  • Terleph, T. A. (2003). The effects of social interaction on behavior and electric organ discharge in two species of mormyrid fish: Gnathonemus petersii (gunther, 1862) and brienomyrus niger (gunther, 1866), mormyridae, teleostei. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Van Wettering, J. R. (1996). Discrimination of electric signals: Implications for electrocommunication in the African electric catfish malapterurus electricus. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Voustianiouk, A. (2003). A weakly discharging electric fish, Gnathonemus petersii (mormyridae, teleostei), as a model of integrated androgen effects on structure and behavior. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Walton, A. G. (2006). Maze learning and recall in weakly electric fish, mormyrus rume proboscirostris boulenger 1898 (teleostei, Mormyridae): Sensory bases. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Zakon, H. H. (2003). Insight into the mechanisms of neuronal processing from electric fish: Current Opinion in Neurobiology Vol 13(6) Dec 2003, 744-750.
  • Zakon, H. H. (2006). Divide and conquer: Cell addition and aggressive signaling in electric fish: Hormones and Behavior Vol 50(1) Jun 2006, 8-9.

External links