Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Clinical: Approaches · Group therapy · Techniques · Types of problem · Areas of specialism · Taxonomies · Therapeutic issues · Modes of delivery · Model translation project · Personal experiences ·


This article is in need of attention from a psychologist/academic expert on the subject.
Please help recruit one, or improve this page yourself if you are qualified.
This banner appears on articles that are weak and whose contents should be approached with academic caution.
Structural.gif|
Seizure
ICD-10 G40, I64, P90, R56
ICD-9 345.9
OMIM [1]
DiseasesDB 19011
MedlinePlus [2]
eMedicine neuro/694 neuro/415
MeSH {{{MeshNumber}}}


An epileptic seizure is caused by excessive and/or hypersynchronous electrical neuronal activity, and is usually self-limiting.[1] It can manifest as an alteration in mental state, tonic or clonic movements, convulsions, and various other psychic symptoms (such as déjà vu or jamais vu). The medical syndrome of recurrent, unprovoked seizures is termed epilepsy, but seizures can occur in people who do not have epilepsy.

The treatment of epilepsy is a subspecialty of neurology; the study of seizures is part of neuroscience. Doctors who specialize in epilepsy are epileptologists; doctors who specialize in the treatment of children with epilepsy are pediatric epileptologists.

Signs and symptoms[]

Seizures can cause involuntary changes in body movement or function, sensation, awareness, or behavior. A seizure can last from a few seconds to status epilepticus, a continuous seizure that will not stop without intervention. Seizures are often associated with a sudden and involuntary contraction of a group of muscles and loss of consciousness. However, a seizure can also be as subtle as marching numbness of a part of the body, a brief or long term loss of memory, sparkling or flashes, sensing/discharging of an unpleasant odor similar to alcohol base is produced by internal organs, a strange epigastric sensation or a sensation of fear and total state of confusion which in some case leads to suicide during seizure. Therefore seizures are typically classified as motor, sensory, autonomic, emotional or cognitive. After a heavy seizure attack as the brain is recovering there is a sudden loss of memory; usually the short term memory[How to reference and link to summary or text].

In some cases, the full onset of a seizure event is preceded by some of the sensations described above. These sensations can serve as a warning to the sufferer that a full tonic-clonic seizure is about to occur. These "warning sensations" are cumulatively called an aura.[3] Also, it is commonly believed among healthcare providers[How to reference and link to summary or text] that many seizures, especially those in children, are preceded by tachycardia that frequently persists throughout the seizure. This early increase in heart rate may supplement an aura as a physiological warning sign of an imminent seizure.

Symptoms experienced by a person during a seizure depend on where in the brain the disturbance in electrical activity occurs. Recent studies show that seizures happen in sleep more often than was thought[How to reference and link to summary or text]. A person having a tonic-clonic seizure may cry out, lose consciousness and fall to the ground, and convulse, often violently. A person having a complex partial seizure may appear confused or dazed and will not be able to respond to questions or direction. Some people have seizures that are not noticeable to others. Sometimes, the only clue that a person is having an absence seizure is rapid blinking, extreme confusion for a few seconds or sometimes into hours[How to reference and link to summary or text].

Types[]

Main article: Epileptic seizure types

Seizure types are organized according to whether the source of the seizure within the brain is localized (partial or focal onset seizures) or distributed (generalized seizures). Partial seizures are further divided on the extent to which consciousness is affected (simple partial seizures and complex partial seizures). If it is unaffected, then it is a simple partial seizure; otherwise it is a complex partial seizure. A partial seizure may spread within the brain—a process known as secondary generalization. Generalized seizures are divided according to the effect on the body, but all involve loss of consciousness. These include:

Following standardization proposal published in 1970, out-dated terms such as "petit mal", "grand mal", "Jacksonian seizures", "psychomotor seizures", and "temporal-lobe seizure" have fallen into disuse.

Diagnosis[]

It can be difficult to distinguish a seizure from other conditions causing a collapse, abnormal movements or other seizure manifestations. A 2007 evidence-based review from the American Academy of Neurology and the American Epilepsy Society recommends an electroencephalogram (EEG, brain wave activity) and brain imaging with CT scan or MRI scan in the work-up. MRI is more sensitive in a first apparently unprovoked seizure. Blood tests, lumbar puncture or toxicology screening can be helpful in specific circumstances suggestive of an underlying cause like meningitis or drug overdose, but there is insufficient evidence to support their routine use in the work-up of an adult with an apparently unprovoked first seizure.[2]

Determining whether a seizure occurred[]

Differentiating a seizure from other conditions such as syncope can be difficult. In addition, 5% of patients with a positive tilt table test may have seizure-like activity that seems to be due to cerebral hypoxia.[3]A major seizure can sometimes be confused with a heart attack and can take days to discover.

Physical examination[]

A small study found that finding a bite to the side of the tongue was very helpful when present: while only a quarter of those with seizures had such a bite (sensitivity of 24%), the finding was very specific for seizures, with only 1% due to other causes (specificity of 99%).[4]

Serum prolactin level[]

Two meta-analyses have quantified the role of an elevated serum prolactin. The first meta-analysis found that[5]: "If a serum prolactin concentration is greater than three times the baseline when taken within one hour of syncope, then in the absence of test "modifiers":

  1. the patient is nine times more likely to have suffered a GTCS as compared with a pseudoseizure positive LR = 8.92 (95% CI (1.31 to 60.91)), SN = 0.62 (95% CI (0.40 to 0.83)), SP = 0.89 (95% CI (0.60 to 0.98))
  2. five times more likely to have suffered a GTCS as compared with non-convulsive syncope positive LR 4.60 (95% CI (1.25 to 16.90)), SN = 0.71 (95% CI (0.49 to 0.87)), SP = 0.85 (95% CI (0.55 to 0.98)). "

The second meta-analysis found:[6]

  1. "Elevated serum prolactin assay, when measured in the appropriate clinical setting at 10 to 20 minutes after a suspected event, is a useful adjunct for the differentiation of generalized tonic-clonic or complex partial seizure from psychogenic nonepileptic seizure among adults and older children (Level B)."
  2. "Serum prolactin assay does not distinguish epileptic seizures from syncope (Level B).
  3. "The use of serum PRL assay has not been established in the evaluation of status" epilepticus, repetitive seizures, and neonatal seizures (Level U)."

The serum prolactin level is less sensitive for detecting partial seizures.[7]

EEG[]

An isolated abnormal electrical activity recorded by an electroencephalography examination without a clinical presentation is called subclinical seizure. They may identify background epileptogenic activity, as well as help identify particular causes of seizures.

Investigation of underlying cause[]

Additional diagnostic methods include CT Scanning and MRI imaging or angiography. These may show structural lesions within the brain and heart, but the majority of those with epilepsy show nothing unusual.

As seizures have a differential diagnosis, it is common for patients to be simultaneously investigated for cardiac and endocrine causes. Checking glucose levels, for example, is a mandatory action in the management of seizures as hypoglycemia may cause seizures, and failure to administer glucose would be harmful to the patient. Other causes typically considered are syncope and cardiac arrhythmias, and occasionally panic attacks and cataplexy. For more information, see non-epileptic seizures.

Management[]

The first aid for a seizure depends on the type of seizure occurring. Generalized seizures will cause the person to fall, which may result in injury. A tonic-clonic seizure results in violent movements that cannot and should not be suppressed. The person should never be restrained, nor should there be any attempt to put something in the mouth. Potentially sharp or dangerous objects should also be moved from the vicinity, so that the individual is not hurt. After the seizure if the person is not fully conscious and alert, they should be placed in the recovery position. Bystanders should remain calm and avoid crowding the person.

It is not necessary to call an ambulance if the person is known to have epilepsy, if the seizure is shorter than five minutes and is typical for them, if it is not immediately followed by another seizure, and if the person is uninjured. Otherwise, or if in any doubt, medical assistance should be sought.

A seizure longer than five minutes is a medical emergency. Relatives and other caregivers of those known to have epilepsy often carry medicine such as rectal diazepam or buccal midazolam in order to rapidly end the seizure.

Safety[]

A sudden fall can lead to broken bones and other injuries. Children who are affected by frequent drop seizures may wear helmets to protect the head during a fall.

The unusual behavior resulting from the chaotic brain activity of a seizure can be misinterpreted as an aggressive act. This may invoke a hostile response or police involvement, where there was no intention to cause harm or trouble. During a prolonged seizure, the person is defenseless and may become a victim of theft.

A seizure response dog can be trained to summon help or ensure personal safety when a seizure occurs. These are not suitable for everybody. Rarely, a dog may develop the ability to sense a seizure before it occurs.[8]

Seizures without epilepsy[]

Main article: Convulsions

Unprovoked seizures are often associated with epilepsy and related seizure disorders while provoked seizures are not necessarily caused by the abnormal, rhythmic discharges of cortical neurons characteristic of epilepsy .

See also[]

References[]

  1. Blume W, Lüders H, Mizrahi E, Tassinari C, van Emde Boas W, Engel J (2001). Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology.. Epilepsia 42 (9): 1212–8.
  2. Krumholz A, Wiebe S, Gronseth G, Shinnar S, Levisohn P, Ting T, Hopp J, Shafer P, Morris H, Seiden L, Barkley G, French J; Quality Standards Subcommittee of the American Academy of Neurology; American Epilepsy Society. Practice Parameter: evaluating an apparent unprovoked first seizure in adults (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2007; 69(21): 1996-2007. PMID 18025394
  3. Passman R, Horvath G, Thomas J, et al (2003). Clinical spectrum and prevalence of neurologic events provoked by tilt table testing. Arch. Intern. Med. 163 (16): 1945–8.
  4. Benbadis SR, Wolgamuth BR, Goren H, Brener S, Fouad-Tarazi F (1995). Value of tongue biting in the diagnosis of seizures. Arch. Intern. Med. 155 (21): 2346–9.
  5. Ahmad S, Beckett MW (2004). Value of serum prolactin in the management of syncope. Emergency medicine journal : EMJ 21 (2): e3.
  6. Chen DK, So YT, Fisher RS (2005). Use of serum prolactin in diagnosing epileptic seizures: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 65 (5): 668–75.
  7. Shukla G, Bhatia M, Vivekanandhan S, et al (2004). Serum prolactin levels for differentiation of nonepileptic versus true seizures: limited utility. Epilepsy & behavior : E&B 5 (4): 517–21.
  8. Dalziel D, Uthman B, Mcgorray S, Reep R (2003). Seizure-alert dogs: a review and preliminary study. Seizure 12 (2): 115–20.

External links[]

Look up this page on
Wiktionary: Epileptic seizures

Template:General symptoms and signs

|}


This page uses Creative Commons Licensed content from Wikipedia (view authors).