Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)
Inhalation (also known as respiration) is the movement of air from the external environment, through the air ways, and into the alveoli.
Inhalation begins with the onset of contraction of the diaphragm, which results in expansion of the intrapleural space and an increase in negative pressure according to Boyle's Law. This negative pressure generates airflow because of the pressure difference between the atmosphere and alveolus. Air enters, inflating the lung through either the nose or the mouth into the pharynx (throat) and trachea before entering the alveoli.
Other muscles that can be involved in inhalation include[1]:
- External intercostal muscles
- Scalene muscles
- Sternocleidomastoid muscle
- Trapezius muscle
See also[]
- Inhalant - Psychoactive drugs consumed through inhalation
- Respiratory system
References[]
- ↑ Physiology at MCG 4/4ch2/s4ch2_10
Respiratory system, physiology: respiratory physiology | |
---|---|
Volumes |
lung volumes - vital capacity - functional residual capacity - respiratory minute volume - closing capacity - dead space - spirometry - body plethysmography - peak flow meter - thoracic independent volume - bronchial challenge test |
Airways |
ventilation (V) (positive pressure) - breath (inhalation, exhalation) -respiratory rate - respirometer - pulmonary surfactant - compliance - hysteresivity - airway resistance |
Blood |
pulmonary circulation - perfusion (Q) - hypoxic pulmonary vasoconstriction - pulmonary shunt |
Interactions |
ventilation/perfusion ratio (V/Q) and scan - zones of the lung - gas exchange - pulmonary gas pressures - alveolar gas equation - hemoglobin - oxygen-haemoglobin dissociation curve (2,3-DPG, Bohr effect, Haldane effect) - carbonic anhydrase (chloride shift) - oxyhemoglobin - respiratory quotient - arterial blood gas - diffusion capacity - Dlco |
Control of respiration |
pons (pneumotaxic center, apneustic center) - medulla (dorsal respiratory group, ventral respiratory group) - chemoreceptors (central, peripheral) - pulmonary stretch receptors - Hering-Breuer reflex |
Insufficiency |
high altitude - oxygen toxicity - hypoxia |
This page uses Creative Commons Licensed content from Wikipedia (view authors). |