Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Cognitive Psychology: Attention · Decision making · Learning · Judgement · Memory · Motivation · Perception · Reasoning · Thinking  - Cognitive processes Cognition - Outline Index

Interoception is the sense of the internal functioning of the body. An interoceptor is any sense organ or sensory receptor which responds to stimuli within the body signalling for example hunger, thirst, nausea etc

These include:

  • Pulmonary stretch receptors are found in the lungs and control the respiratory rate.
  • Peripheral chemoreceptors in the brain monitor the carbon dioxide and oxygen levels in the brain to give a feeling of suffocation if carbon dioxide levels get too high.[1]
  • The chemoreceptor trigger zone is an area of the medulla in the brain that receives inputs from blood-borne drugs or hormones, and communicates with the vomiting center.
  • Chemoreceptors in the circulatory system also measure salt levels and prompt thirst if they get too high (they can also respond to high sugar levels in diabetics[2]).
  • Cutaneous receptors in the skin not only respond to touch, pressure, and temperature, but also respond to vasodilation in the skin such as blushing.
  • Stretch receptors in the gastrointestinal tract sense gas distension that may result in colic pain.
  • Stimulation of sensory receptors in the esophagus result in sensations felt in the throat when swallowing, vomiting, or during acid reflux.
  • Sensory receptors in pharynx mucosa, similar to touch receptors in the skin, sense foreign objects such as food that may result in a gag reflex and corresponding gagging sensation.
  • Stimulation of sensory receptors in the urinary bladder and rectum may result in sensations of fullness.
  • Stimulation of stretch sensors that sense dilation of various blood vessels may result in pain, for example headache caused by vasodilation of brain arteries.


Interoceptive awareness

The right anterior insula aids interoceptive awareness of body states, such as the ability to time one's own heart beat. Moreover, greater right anterior insular gray matter volume correlates with increased accuracy in this subjective sense of the inner body, and with negative emotional experience.[3] It is also involved in the control of blood pressure,[4] particularly during and after exercise,[4] and its activity varies with the amount of effort a person believes they are exerting.[5][6]

The insular cortex also is where the sensation of pain is judged as to its degree.[7] Further, the insula is where a person imagines pain when looking at images of painful events while thinking about them happening to one's own body.[8] Those with irritable bowel syndrome have abnormal processing of visceral pain in the insular cortex related to dysfunctional inhibition of pain within the brain.[9]

Another perception of the right anterior insula is the degree of nonpainful warmth[10] or nonpainful coldness[11] of a skin sensation. Other internal sensations processed by the insula include stomach or gastric distension.[12][13] A full bladder also activates the insular cortex.[14]

One brain imaging study suggest that the unpleasantness of subjectively perceived dyspnea is processed in the right human anterior insula and amygdala.[15]

The cerebral cortex processing vestibular sensations extends into the insula[16] with small lesions in the anterior insular cortex being able to cause loss of balance and vertigo.[17]

Other noninteroceptive perceptions include passive listening to music,[18] laughter and crying,[19] empathy and compassion,[20] and language.[21]

See also


  3. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (February 2004). Neural systems supporting interoceptive awareness. Nat. Neurosci. 7 (2): 189–95.
  4. 4.0 4.1 Lamb K, Gallagher K, McColl R, Mathews D, Querry R, Williamson JW (April 2007). Exercise-induced decrease in insular cortex rCBF during postexercise hypotension. Med Sci Sports Exerc 39 (4): 672–9.
  5. Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP (April 2001). Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J. Appl. Physiol. 90 (4): 1392–9.
  6. Williamson JW, McColl R, Mathews D, Ginsburg M, Mitchell JH (September 1999). Activation of the insular cortex is affected by the intensity of exercise. J. Appl. Physiol. 87 (3): 1213–9.
  7. Baliki MN, Geha PY, Apkarian AV (February 2009). Parsing pain perception between nociceptive representation and magnitude estimation. J. Neurophysiol. 101 (2): 875–87.
  8. Ogino Y, Nemoto H, Inui K, Saito S, Kakigi R, Goto F (May 2007). Inner experience of pain: imagination of pain while viewing images showing painful events forms subjective pain representation in human brain. Cereb. Cortex 17 (5): 1139–46.
  9. Song GH, Venkatraman V, Ho KY, Chee MW, Yeoh KG, Wilder-Smith CH (December 2006). Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126 (1-3): 79–90.
  10. Olausson H, Charron J, Marchand S, Villemure C, Strigo IA, Bushnell MC (November 2005). Feelings of warmth correlate with neural activity in right anterior insular cortex. Neurosci. Lett. 389 (1): 1–5.
  11. Craig AD, Chen K, Bandy D, Reiman EM (February 2000). Thermosensory activation of insular cortex. Nat. Neurosci. 3 (2): 184–90.
  12. Ladabaum U, Minoshima S, Hasler WL, Cross D, Chey WD, Owyang C (February 2001). Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology 120 (2): 369–76.
  13. Hamaguchi T, Kano M, Rikimaru H, et al. (June 2004). Brain activity during distention of the descending colon in humans. Neurogastroenterol. Motil. 16 (3): 299–309.
  14. Matsuura S, Kakizaki H, Mitsui T, Shiga T, Tamaki N, Koyanagi T (November 2002). Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J. Urol. 168 (5): 2035–9.
  15. von Leupoldt, A., Sommer, T., Kegat, S., Baumann, H. J., Klose, H., Dahme, B., Buchel, C. (24 January 2008). The Unpleasantness of Perceived Dyspnea Is Processed in the Anterior Insula and Amygdala. American Journal of Respiratory and Critical Care Medicine 177 (9): 1026–1032.
  16. Kikuchi M, Naito Y, Senda M, et al. (April 2009). Cortical activation during optokinetic stimulation — an fMRI study. Acta Otolaryngol. 129 (4): 440–3.
  17. Papathanasiou ES, Papacostas SS, Charalambous M, Eracleous E, Thodi C, Pantzaris M (2006). Vertigo and imbalance caused by a small lesion in the anterior insula. Electromyogr Clin Neurophysiol 46 (3): 185–92.
  18. Brown S, Martinez MJ, Parsons LM (September 2004). Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport 15 (13): 2033–7.
  19. Sander K, Scheich H (October 2005). Left auditory cortex and amygdala, but right insula dominance for human laughing and crying. J Cogn Neurosci 17 (10): 1519–31.
  21. Bamiou DE, Musiek FE, Luxon LM (May 2003). The insula (Island of Reil) and its role in auditory processing. Literature review. Brain Res. Brain Res. Rev. 42 (2): 143–54.
This page uses Creative Commons Licensed content from Wikipedia (view authors).