Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic fields produced by electrical activity in the brain via extremely sensitive devices such as superconducting quantum interference devices (SQUIDs). These measurements are commonly used in both research and clinical settings. There are many uses for the MEG, including assisting surgeons in localizing a pathology, assisting researchers in determining the function of various parts of the brain, neurofeedback, and others.

History of the MEG

The MEG was first measured by David Cohen[1] in 1968, before the availability of the SQUID, using only a copper induction coil as the detector. To reduce the magnetic background noise, the measurements were made in a magnetically shielded room. However, the insensitivity of this detector resulted in poor, noisy MEG signals, which were difficult to use. Then, later at MIT, he built a better shielded room, and used one of the first SQUID detectors (just developed by Zimmerman[2]) to again measure the MEG[3]. This time the signals were almost as clear as the EEG, and stimulated the interest of physicists who had begun looking for uses of SQUIDs. Thus, the MEG began to be used, so that various types of spontaneous and evoked MEG’s began to be measured.

At first only a single SQUID detector was used, to successively measure the magnetic field at a number of points around the subject’s head. This was cumbersome, and in the 1980’s, MEG manufacurers began to increase the number of sensors in the dewar to cover a larger area of the head, using a correspondingly larger dewar. Present-day MEG dewars are helmet-shaped and contain as many as 300 sensors, covering most of the head, as shown in the first figure. In this way, MEG’s of a subject or patient can now be accumulated rapidly and efficiently.

The basis of the MEG signal

Synchronized neuronal currents induce very weak magnetic fields that can be measured on MEG. However, the magnetic field of the brain is considerably smaller at 10 fT (femtotesla) for cortical activity and fT for the human alpha rhythm than the ambient magnetic noise in an urban environment, which is on the order of fT. Two essential problems of biomagnetism arise: weakness of the signal and strength of the competing environmental noise. The development of extremely sensitive measurement devices, SQUIDs, facilitates analysis of the brain's magnetic field and confronts the aforementioned problems.

origin of the brain's magnetic field; the electric current also produces the EEG

The MEG (and EEG) signals derive from the net effect of ionic currents flowing in the dendrites of neurons during synaptic transmission. In accordance with Maxwell's equations, any electrical current will produce an orthogonally oriented magnetic field. It is this field which is measured with MEG. The net currents can be thought of as current dipoles which are currents defined to have an associated position, orientation, and magnitude, but no spatial extent. According to the right-hand rule, a current dipole gives rise to a magnetic field that flows around the axis of its vector component.

In order to generate a signal that is detectable, approximately 50,000 active neurons are needed.[4] Since current dipoles must have similar orientations to generate magnetic fields that reinforce each other, it is often the layer of pyramidal cells in the cortex, which are generally perpendicular to its surface, that give rise to measurable magnetic fields. Furthermore, it is often bundles of these neurons located in the sulci of the cortex with orientations parallel to the surface of the head that project measurable portions of their magnetic fields outside of the head. Researchers are experimenting with various signal processing methods to try to find methods that will allow deep brain (i.e., non-cortical) signal to be detected, but as of yet there is no clinically useful method available.

It is worth noting that action potentials do not usually produce an observable field, mainly because the currents associated with action potentials flow in opposite directions and the magnetic fields cancel out. However, action fields have been measured from peripheral nerves.

Magnetic shielding

Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. Appropriate magnetic shielding can be obtained by constructing rooms made of aluminium and mu-metal for reducing high-frequency and low-frequency noise, respectively.

File:MSR layered door.jpg

Actual photo of the entrance to MSR, showing the separate shielding layers.

Magnetically Shielded Rooms

A Magnetically Shielded Room (MSR) model consists of three nested main layers. Each of these layers is made of a pure aluminium layer plus a high permeability ferromagnetic layer, similar in composition to Moly Permalloy. The ferromagnetic layer is supplied as 1 mm sheets, while the innermost layer is composed of four sheets in close contact, and the outer two layers are composed of three sheets each. Magnetic continuity is maintained by overlay strips. Insulating washers are used in the screw assemblies so that each main layer is electrically isolated to help eliminate radio frequencies, which degrade SQUID performance. Electrical continuity of the aluminium is also maintained by aluminium overlay strips to allow AC eddy-current shielding which is important at frequencies greater than 1 Hz. The junctions of the inner layer are often electroplated with silver or gold to improve conductivity of the aluminium layers. [5]

Active shielding system

Active systems are designed for three dimensional noise cancellation. To implement an active system, low-noise fluxgate magnetometers are mounted at the center of each surface and oriented orthogonally to it. This negatively feeds a DC amplifier through a low-pass network with a slow falloff to minimize positive feedback and oscillation. Built into the system are shaking and degaussing wires. Shaking wires increase the magnetic permeability, while the permanent degaussing wires are applied to all surfaces of the inner main layer to degauss the surfaces. [1] Moreover, noise cancellation algorithms can reduce both low-frequency and high-frequency noise. Modern systems have a noise floor of around 2 to 3 fT per √Hz above 1 Hz.

Source localization

The inverse problem

Main article: Inverse problem

In order to determine the location of the activity within the brain, advanced signal processing techniques are used which use the magnetic fields measured outside the head to estimate the location of that activity's source. This is referred to as the inverse problem. (The forward problem is a situation where we know where the source(s) is (are) and we are estimating the field at a given distance from the source(s).) The primary technical difficulty is that the inverse problem does not have a unique solution (i.e., there are infinite possible "correct" answers), and the problem of finding the best solution is itself the subject of intensive research. Adequate solutions can be derived using models involving prior knowledge of brain activity.

The source models can be either overdetermined or underdetermined. An overdetermined model may consist of a few point-like sources, whose locations are then estimated from the data. The underdetermined models may be used in cases where many different distributed areas are activated; there are several possible current distributions explaining the measurement results, but the most likely is selected. It is believed by some researchers in the field that more complex source models increase the quality of a solution. However this may decrease the robustness of the estimation and increasing the effects of forward model errors. Many experiments use simple models, reducing possible sources of error and decreasing the computation time to find a solution. Localization algorithms make use of the given source and head models to find a likely location for an underlying focal field generator. An alternative methodology involves performing independent component analysis first in order to segregate sources without using a forward model,[6] and then localizing the separated sources individually. This method has been shown to improve the signal-to-noise ratio of the data by correctly separating non-neuronal noise sources from neuronal sources, and has shown promise in segregating focal neuronal sources.

Localization algorithms using overdetermined models operate by successive refinement. The system is initialized with a first guess. Then a loop is entered, in which a forward model is used to generate the magnetic field that would result from the current guess, and the guess then adjusted to reduce the difference between this estimated field and the measured field. This process is iterated until convergence.

Another approach is to ignore the ill-posed inverse problem and estimate the current at a fixed location. This method makes use of beamforming techniques. One such approach is the second-order technique known as Synthetic Aperture Magnetometry (SAM), which uses a linear weighting of the sensor channels to focus the array on a given target location. Whereas SAM uses the temporal domain, and a non linear fitting of the dipole, other approaches use the fourier transform of the signals and a linear dipole fit. The so-approximated sources can be used to compute to estimate the synchronisation of large brain networks [7].

Magnetic source imaging

The estimated source locations can be combined with magnetic resonance imaging (MRI) images to create magnetic source images (MSI). The two sets of data are combined by measuring the location of a common set of fiducial points marked during MRI with lipid markers and marked during MEG with electrified coils of wire that give off magnetic fields. The locations of the fiducial points in each data set are then used to define a common coordinate system so that superimposing ("coregistering") the functional MEG data onto the structural MRI data is possible .

A criticism of the use of this technique in clinical practice is that it produces colored areas with definite boundaries superimposed upon an MRI scan: the untrained viewer may not realize that the colors do not represent a physiological certainty, because of the relatively low spatial resolution of MEG, but rather a probability cloud derived from statistical processes. However, when the magnetic source image corroborates other data, it can be of clinical utility.

Dipole model source localization

A widely accepted source-modeling technique for MEG involves calculating a set of Equivalent Current Dipoles (ECDs), which assumes the underlying neuronal sources are focal. This dipole fitting procedure is non-linear at over-determined as the number of unknown dipole parameters is less than the number of MEG measurements [8]. Automated multiple dipole model algorithms such as Multiple Signal Classification (Multiple Signal Classification ) and MSST (Multistart spatial and temporal) modeling are applied to analysis of MEG responses. The limitations of dipole models to characterize neuronal responses has three main drawbacks: (1) significant difficulties in localizing extended sources with ECDs, (2) problems with accurately estimating the total number of dipoles in advance, and (3) the sensitivity of dipole location, especially with respect to depth in the brain.

Lead-field-based imaging approach

Unlike multiple-dipole modeling, lead-field-based modeling divides the source space into a grid containing a large number of dipoles. The inverse problem is to obtain the dipole moments for the grid nodes [9]. As the number of unknown dipole moments is much greater than the number of MEG sensors, the inverse solution is highly underdetermined. To compensate for this, additional constraints are needed to reduce non-uniqueness of the solution. The primary advantage of this system is that no prior specification for source model must be made. Other strengths include relatively low computation load and smooth source time-courses, both of which lead to simple statistical comparison. A weakness is that the spatial resolution is quite poor, and tends to provide distributed statistical reconstruction models, despite having focal generators.

Independent Component Analysis

Independent Component Analysis (ICA), is another signal processing solution that separates different signals that are statistically independent in time. It is primarily used to remove artifacts such as blinking, eye muscle movement, facial muscle artifacts, cardiac artifacts, etc. from MEG and EEG signals that may be contaminated with outside noise [10]. However, ICA has poor resolution of highly correlated brain sources due to its fundamental statistical independence.

MEG Use in the Field

In research, MEG's primary use is the measurement of time courses of activity, as such time courses cannot be measured using functional magnetic resonance imaging (fMRI). MEG also accurately pinpoints sources in primary auditory, somatosensory and motor areas, whereas its use in creating functional maps of human cortex during more complex cognitive tasks is more limited; in those cases MEG should preferably be used in combination with fMRI. It should be noted, however, that neuronal (MEG) and hemodynamic (fMRI) data do not necessarily agree and the methods complement each other. However, the two signals may have a common source: it is known that there is a tight relationship between LFP (local field potentials) and BOLD (blood oxgenation level dependent) signals. Since the LFP is the source signal of MEG/EEG, MEG and BOLD signals may derive from the same source (though the BOLD signals are filtered through the hemodynamic response).

Focal Epilepsy

The clinical uses of MEG are in detecting and localizing epileptiform spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors or intractable epilepsy. The goal of epilepsy surgery is to remove the epileptogenic tissue while sparing essential brain areas to avoid neurologic deficits [11]. Knowing the exact position of essential brain regions (such as the primary motor cortex and primary sensory cortex, visual cortex, and speech cortex) is of utmost importance. Direct cortical stimulation and somatosensory evoked potentials recorded on ECoG are considered the gold standard for localization of essential brain regions. These procedures can be performed either intraoperatively or from chronically indwelling subdural grid electrodes; however, they are both invasive to the patient. MEG localizations of the central sulcus obtained from somatosensory evoked magnetic fields show strong agreement with these invasive recordings [12][13][14]. MEG studies assist in clarification of the functional organization of primary somatosensory cortex and to delineate the spatial extent of hand somatosensory cortex by stimulation of the individual digits. This agreement between invasive measures of localization of cortical tissue and MEG recordings implies the effectiveness of MEG analysis.

Controversy of MEG Studies

MEG has also recently been used somewhat more controversially to study more sophisticated cognitive processes such as audition and language processing.

Comparison with Other Imaging Techniques

MEG has been in development since the 1960s but has been greatly aided by recent advances in computing algorithms and hardware, and promises improved spatial resolution coupled with extremely high temporal resolution (better than 1 ms); since MEG takes its measurements directly from the activity of the neurons themselves its temporal resolution is comparable with that of intracranial electrodes.

MEG's strengths complement those of other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), and fMRI whose strengths, in turn, complement MEG. Other important strengths to note about MEG are that the biosignals it measures do not depend on head geometry as much as EEG does (unless ferromagnetic implants are present) and that it is completely non-invasive, as opposed to PET and possibly MRI/fMRI.


Although EEG and MEG are generated by the same neurophysiologic processes, there are important differences concerning the neurogenesis of MEG and EEG [15]. In contrast to electric fields, magnetic fields are less distorted by the resistive properties of the skull and scalp, which result in a better spatial resolution of the MEG. As Electric and magnetic fields are oriented perpendicular to each other, the directions of highest sensitivity, usually the direction between the field maxima, are orthogonal to each other. Whereas scalp EEG is sensitive to both tangential and radial components of a current source in a spherical volume conductor, MEG detects only its tangential components. This shows MEG selectively measures the activity in the sulci, whereas scalp EEG measures activity both in the sulci and at the top of the cortical gyri but appears to be dominated by radial sources.

Scalp EEG is sensitive to extracellular volume currents produced by postsynaptic potentials, MEG primarily detects intracellular currents associated with these synaptic potentials because the field components generated by volume currents tend to cancel out in a spherical volume conductor [16] The decay of magnetic fields as a function of distance is more pronounced than for electric fields. MEG is therefore more sensitive to superficial cortical activity, which should be useful for the study of neocortical epilepsy. Finally, MEG is reference-free which is in contrast to scalp EEG, where an active reference can lead to serious difficulties in the interpretation of the data.

See also


Primary Sources

  1. Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science 1968;161:784-6.
  2. Zimmerman, J.E., Theine, P., and Harding, J.T. Design and operation of stable rf-biased superconducting point-contact quantum devices, etc. Journal of Applied Physics 1970; 41:1572-1580.
  3. Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 1972;175:664-66
  4. Okada Y (1983): Neurogenesis of evoked magnetic fields. In: Williamson SH, Romani GL, Kaufman L, Modena I, editors. Biomagnetism: an Interdisciplinary Approach. New York: Plenum Press, pp 399-408
  5. D. Cohen, U. Schläpfer. Ahlfors, M. Hämäläinen, and E. Halgren. New Six-Layer Magnetically-Shielded Room for MEG. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA; Mass.Inst.of Tech.; Imedco AG, Hägendorf, Switzerland; Low Temp. Lab., Helsinki Univ. of Technology.
  6. The Forward model - the imaging process by Björn Gustavsson (2000)
  7. Schnitzler, A. and Gross, J. Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 2005;6:285–96.
  8. Huang, M; Dale, A M; Song, T; Halgren, E; Harrington, D L; Podgorny, I; Canive, J M; Lewis, S; Lee, R R. Vector-based spatial-temporal minimum L1-norm solution for MEG. NeuroImage, 2005; 31:1025-1037.
  9. Hamalainen, M S; Ilmoniemi, R J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 1994; 32: 35-42.
  10. Jung, T P; Makeig, S; Westerfield, M; Townsend, J; Courchesne, E; Sejnowski, TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neuro-physiol, 1997; 111: 1745-1758.
  11. Luders HO. Epilepsy surgery. New York Raven Press, 1992.
  12. Sutherling WW, Crandall PH, Darcey TM, Becker DP, Levesque MF, Barth DS. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 198838:1705-14.
  13. Rowley HA, Roberts TP. Functional localization by rnagnetoencephalography.Neuroimaging Clin North Am, 1995;5:695-710
  14. Gallen CC, Hirschkoff EC, Buchanan DS. Magnetoencephalograpby and magnetic source imaging. Capabilities and limitations. Neuroimaging Clin North Am, 1995;5:22749
  15. Cohen D, Cuffin BN. Demonstration of useful differences between the magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol, 1983;56:38-51.
  16. Barth DS, Sutherling WW, Beatty J. Intracellular currents of interictal penicillin spikes: evidence from neuromagnetic mapping. Brain Res, 1986;368:36-48.

Further reading

  • Baillet S., Mosher J. C., Leahy R. M.(2001) "Electromagnetic Brain Mapping" in IEEE Signal Processing Magazine, November 2001, 14-30.
  • Cohen, D. "Boston and the history of biomagnetism". Neurology and Clinical Neurophysiology 2004; 30: 1.
  • Cohen, D., Halgren, E. (2004). "Magnetoencephalography". In: Encyclopedia of Neuroscience, Adelman G., Smith B., editors Elsevier, 1st, 2nd and 3rd (2004) editions.
  • Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J. and Lounasmaa, O. V. (1993) "Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of signal processing in the human brain" in Reviews of Modern Physics 1993, 65: pp. 413–497
  • Murakami S, Okada Y. Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol. 2006 Sep 15;575(Pt 3):925-36.
  • Suk, J., Ribary, U., Cappell,J. Yamamoto, T. and Llinas, R. Anatomical localization revealed by MEG recordings of the human somatosensory system. EEG J 78:185-196, 1991.
  • Tanzer I.O., (2006) Numerical Modeling in Electro- and Magnetoencephalography, Ph.D. Thesis, Helsinki University of Technology,

Further references

  • Abarbanel, J. M., Lemberg, T., Yaroslavski, U., Grisaru, N., & et al. (1996). Electrophysiological responses to transcranial magnetic stimulation in depression and schizophrenia: Biological Psychiatry Vol 40(2) Jul 1996, 148-150.
  • Abatzoglou, J., Anninos, P., Adamopoulos, A., & Koukourakis, M. (2007). Nonlinear analysis of brain magnetoencephalographic activity in Alzheimer disease patients: Acta Neurologica Belgica Vol 107(2) Jun 2007, 34-39.
  • Ackermann, H., Lutzenberger, W., & Hertrich, I. (1999). Hemispheric lateralization of the neural encoding of temporal speech features: A whole-head magnetencephalography study: Cognitive Brain Research Vol 7(4) Mar 1999, 511-518.
  • Ahlfors, S. P., Ilmoniemi, R. J., & Portin, K. (1993). The effect of stimulation rate on the signal-to-noise ratio of evoked responses: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 88(4) Jul-Aug 1993, 339-342.
  • Ahveninen, J., Jaaskelainen, I. P., Osipova, D., Huttunen, M. O., Ilmoniemi, R. J., Kaprio, J., et al. (2006). Inherited Auditory-Cortical Dysfunction in Twin Pairs Discordant for Schizophrenia: Biological Psychiatry Vol 60(6) Sep 2006, 612-620.
  • Aine, C. J., Supek, S., & George, J. S. (1995). Temporal dynamics of visual-evoked neuromagnetic sources: Effects of stimulus parameters and selective attention: International Journal of Neuroscience Vol 80(1-4) Jan-Feb 1995, 79-104.
  • Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., Hoshiyama, M., Tamura, Y., et al. (2007). Objective examination for two-point stimulation using a somatosensory oddball paradigm: An MEG study: Clinical Neurophysiology Vol 118(2) Feb 2007, 403-411.
  • Akhtari, M., McNay, D., Mandelkern, M., Teeter, B., & et al. (1994). Somatosensory evoked response source localization using actual cortical surface as the spatial constraint: Brain Topography Vol 7(1) Fal 1994, 63-69.
  • Al-Hamouri, F., Maestu, F., del Rio, D., Fernandez, S., Campo, P., Capilla, A., et al. (2005). Brain dynamics of Arabic reading: A magnetoencephalographic study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(16) Nov 2005, 1861-1864.
  • Alho, K., Huotilainen, M., Lavikainen, J., Tiitinen, H., & Ilmoniemi, R. J. (1996). Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses: Psychophysiology Vol 33(4) Jul 1996, 369-375.
  • Alho, K., Winkler, I., Escera, C., Huotilainen, M., Virtanen, J., Jaaskelainen, I. P., et al. (1998). Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings: Psychophysiology Vol 35(2) Mar 1998, 211-224.
  • Amano, K., Goda, N., Nishida, S. y., Ejima, Y., Takeda, T., & Ohtani, Y. (2006). Estimation of the Timing of Human Visual Perception from Magnetoencephalography: Journal of Neuroscience Vol 26(15) Apr 2006, 3981-3991.
  • Amano, K., Nishida, S. y., & Takeda, T. (2006). MEG responses correlated with the visual perception of velocity change: Vision Research Vol 46(3) Feb 2006, 336-345.
  • Amo, C., Criado, J. R., & Otis, S. M. (2006). Registro magnetoencefalografico de areas motoras secundarias durante simulacao interna do movimento: Arquivos de Neuro-Psiquiatria Vol 64(2-B) Jun 2006, 394-397.
  • Amo, C., Fernandez, A., Leon, J. M., Ortiz, T., Maestu, F., Ferre, F., et al. (2006). Paroxysmal MEG activity in obsessive compulsive patients without SSRIs therapy: European Psychiatry Vol 21(2) Mar 2006, 139-141.
  • Amo, C., Quesney, L. F., Ortiz, T., Maestu, F., Fernandez, A., Lopez-Ibor, M. I., et al. (2004). Limbic paroxysmal magnetoencephalographic activity in 12 obsessive-compulsive disorder patients: A new diagnostic finding: Journal of Clinical Psychiatry Vol 65(2) Feb 2004, 156-162.
  • Amo, C., Saldana, C., Hidalgo, M. G., Maestu, F., Fernandez, A., Arrazola, J., et al. (2003). Magnetoencephalographic localization of peritumoral temporal epileptic focus previous surgical resection: Seizure Vol 12(1) Jan 2003, 19-22.
  • Andreasen, N., & et al. (1986). Structural abnormalities in the frontal system in schizophrenia: A magnetic resonance imaging study: Archives of General Psychiatry Vol 43(2) Feb 1986, 136-144.
  • Anninos, P., Adamopoulos, A., Kotini, A., Tsagas, N., Tamiolakis, D., & Prassopoulos, P. (2007). MEG evaluation of Parkinson's diseased patients after external magnetic stimulation: Acta Neurologica Belgica Vol 107(1) Mar 2007, 5-10.
  • Armstrong, R. A., Slaven, A., & Harding, G. F. (1991). The influence of age on the pattern and flash visual evoked magnetic response (VEMR): Ophthalmic and Physiological Optics Vol 11(1) Jan 1991, 71-75.
  • Armstrong, R. A., Slaven, A., & Harding, G. F. (1991). Visual evoked magnetic fields to flash and pattern in 100 normal subjects: Vision Research Vol 31(11) 1991, 1859-1864.
  • Aspell, J. E., Tanskanen, T., & Hurlbert, A. C. (2005). Neuromagnetic correlates of visual motion coherence: European Journal of Neuroscience Vol 22(11) Dec 2005, 2937-2945.
  • Assaf, B. A., Karkar, K. M., Laxer, K. D., Garcia, P. A., Austin, E. J., Barbaro, N. M., et al. (2004). Magnetoencephalography source localization and surgical outcome in temporal lobe epilepsy: Clinical Neurophysiology Vol 115(9) Sep 2004, 2066-2076.
  • Avikainen, S., Liuhanen, S., Schurmann, M., & Hari, R. (2003). Enhanced Extrastriate Activation during Observation of Distorted Finger Postures: Journal of Cognitive Neuroscience Vol 15(5) Jul 2003, 658-663.
  • Babajani, A., Nekooei, M.-H., & Soltanian-Zadeh, H. (2005). Integrated MEG and fMRI Model: Synthesis and Analysis: Brain Topography Vol 18(2) Win 2005, 101-113.
  • Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., Penna, S. D., et al. (2005). Human Alpha Rhythms During Visual Delayed Choice Reaction Time Tasks: A Magnetoencephalography Study: Human Brain Mapping Vol 24(3) Mar 2005, 184-192.
  • Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Percio, C. D., Penna, S. D., et al. (2005). Human Alpha Rhythms During Visual Delayed Choice Reaction Time Tasks: A Magnetoencephalography Study, Human Brain Mapping 2005;24(3): 184-192: Human Brain Mapping Vol 24(4) Apr 2005, 332.
  • Babiloni, C., Brancucci, A., Pizzella, V., Romani, G. L., Tecchio, F., Torquati, K., et al. (2005). Contingent Negative Variation in the Parasylvian Cortex Increases During Expectancy of Painful Sensorimotor Events: A Magnetoencephalographic Study: Behavioral Neuroscience Vol 119(2) Apr 2005, 491-502.
  • Babiloni, C., Cassetta, E., Chiovenda, P., Del Percio, C., Ercolani, M., Moretti, D. V., et al. (2005). Alpha rhythms in mild dements during visual delayed choice reaction time tasks: A MEG study: Brain Research Bulletin Vol 65(6) May 2005, 457-470.
  • Babiloni, C., del Percio, C., Babiloni, F., Carducci, F., Cincotti, F., Moretti, D. V., et al. (2003). Transient human cortical responses during the observation of simple finger movements: A high-resolution EEG study: Human Brain Mapping Vol 20(3) Nov 2003, 148-157.
  • Babiloni, F., Babiloni, C., Carducci, F., Romani, G. L., Rossini, P. M., Angelone, L. M., et al. (2004). Multimodal Integration of EEG and MEG Data: A Simulation Study with Variable Signal-to-Noise Ratio and Number of Sensors: Human Brain Mapping Vol 22(1) May 2004, 52-62.
  • Babul-Virji, N., Cheung, T., Weeks, D., Herdman, A. T., & Cheyne, D. (2007). Magnetoencephalographic analysis of cortical activity in adults with and without Down syndrome: Journal of Intellectual Disability Research Vol 51(12) Dec 2007, 982-987.
  • Baker, R. R. (1988). Human magnetoreception for navigation. New York, NY: Alan R Liss.
  • Bartolomei, F., Bosma, I., Klein, M., Baayen, J. C., Reijneveld, J. C., Postma, T. J., et al. (2006). How Do Brain Tumors Alter Functional Connectivity? A Magnetoencephalography Study: Annals of Neurology Vol 59(1) Jan 2006, 128-138.
  • Basile, L. F. H., Brunder, D. G., Tarkka, I. M., & Papanicolaou, A. C. (1997). Magnetic fields from human prefrontal cortex differ during two recognition tasks: International Journal of Psychophysiology Vol 27(1) Jul 1997, 29-41.
  • Basile, L. F. H., Rogers, R. L., Bourbon, W. T., & Papanicolaou, A. C. (1994). Slow magnetic flux from human frontal cortex: Electroencephalography & Clinical Neurophysiology Vol 90(2) Feb 1994, 157-165.
  • Basile, L. F. H., Simos, P. G., Tarkka, I. M., Brunder, D. G., al, e., & et al. (1996). Task-specific magnetic fields from the left human frontal cortex: Brain Topography Vol 9(1) Fal 1996, 31-37.
  • Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E., & Raichle, M. E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(51) Dec 2006, 19518-19523.
  • Bast, T., Wright, T., Boor, R., Harting, I., Feneberg, R., Rupp, A., et al. (2007). Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies: Clinical Neurophysiology Vol 118(8) Aug 2007, 1721-1735.
  • Beatty, J. (1990). Magnetoencephalographic analysis of human cognitive processes. New York, NY: Guilford Press.
  • Beisteiner, R., Gartus, A., Erdler, M., Mayer, D., Lanzenberger, R., & Deecke, L. (2004). Magnetoencephalography indicates finger motor somatotopy: European Journal of Neuroscience Vol 19(2) Jan 2004, 465-472.
  • Billingsley-Marshall, R. L., Simos, P. G., & Papanicolaou, A. C. (2004). Reliability and validity of functional neuroimaging techniques for identifying language-critical areas in children and adults: Developmental Neuropsychology Vol 26(2) 2004, 541-563.
  • Blumenfeld, L. D., & Clementz, B. A. (2001). Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: Single trials analysis using MEG: Clinical Neurophysiology Vol 112(9) Sep 2001, 1650-1659.
  • Bohland, J. W. (2007). Neuroimaging and computational modeling of syllable sequence production. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Bowyer, S. M., Fleming, T., Greenwald, M. L., Moran, J. E., Mason, K. M., Weiland, B. J., et al. (2005). Magnetoencephalographic localization of the basal temporal language area: Epilepsy & Behavior Vol 6(2) Mar 2005, 229-234.
  • Bowyer, S. M., Moran, J. E., Mason, K. M., Constantinou, J. E., Smith, B. J., Barkley, G. L., et al. (2004). MEG localization of language-specific cortex utilizing MR-FOCUSS: Neurology Vol 62(12) Jun 2004, 2247-2255.
  • Braeutigam, S., Bailey, A. J., & Swithenby, S. J. (2001). Task-dependent early latency (30-60 ms) visual processing of human faces and other objects: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(7) May 2001, 1531-1536.
  • Braeutigam, S., Rose, S. P. R., Swithenby, S. J., & Ambler, T. (2004). The distributed neuronal systems supporting choice-making in real-life situations: Differences between men and women when choosing groceries detected using magnetoencephalography: European Journal of Neuroscience Vol 20(1) Jul 2004, 293-302.
  • Braithwaite, J. J., & Townsend, M. (2005). Research Note: Sleeping With the Entity - A Quantitative Magnetic Investigation of an English Castle's Reputedly 'Haunted' Bedroom: European Journal of Parapsychology Vol 20(1) 2005, 65-78.
  • Braun, C., Staudt, M., Schmitt, C., Preissl, H., Birbaumer, N., & Gerloff, C. (2007). Crossed cortico-spinal motor control after capsular stroke: European Journal of Neuroscience Vol 25(9) May 2007, 2935-2945.
  • Braun, C., Weber, J., Schiefer, U., Skalej, M., & Dietrich, T. (2001). Hyperexcitatory activity in visual cortex in homonymous hemianopia after stroke: Clinical Neurophysiology Vol 112(2) Feb 2001, 336-343.
  • Breier, J. I., Maher, L. M., Novak, B., & Papanicolaou, A. C. (2006). Functional Imaging Before and After Constraint-Induced Language Therapy for Aphasia Using Magnetoencephalography: Neurocase Vol 12(6) Dec 2006, 322-331.
  • Breier, J. I., Maher, L. M., Schmadeke, S., Hasan, K. M., & Papanicolaou, A. C. (2007). Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: A case study: Neurocase Vol 13(3) Jun 2007, 169-177.
  • Breier, J. I., Simos, P. G., Zouridakis, G., & Papanicolaou, A. C. (1998). Relative timing of neuronal activity in distinct temporal lobe areas during a recognition memory task for words: Journal of Clinical and Experimental Neuropsychology Vol 20(6) Dec 1998, 782-790.
  • Burgess, N., & O'Keefe, J. (2005). The Theta Rhythm: Hippocampus Vol 15(7) 2005, 825-826.
  • Byrnes, M. L., Thickbroom, G. W., Phillips, B. A., Wilson, S. A., & Mastaglia, F. L. (1999). Physiological studies of the corticomotor projection to the hand after subcortical stroke: Clinical Neurophysiology Vol 110(3) Mar 1999, 487-498.
  • Caetano, G., Jousmaki, V., & Hari, R. (2007). Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 104(21) May 2007, 9058-9062.
  • Campbell, W. K., Krusemark, E. A., Dyckman, K. A., Brunell, A. B., McDowell, J. E., Twenge, J. M., et al. (2006). A magnetoencephalography investigation of neural correlates for social exclusion and self-control: Social Neuroscience Vol 1(2) Jun 2006, 124-134.
  • Campo, P., Maestu, F., Capilla, A., Fernandez, S., Fernandez, A., & Ortiz, T. (2005). Activity in human medial temporal lobe associated with encoding process in spatial working memory revealed by magnetoencephalography: European Journal of Neuroscience Vol 21(6) Mar 2005, 1741-1748.
  • Campo, P., Maestu, F., Capilla, A., Morales, M., Fernandez, S., del Rio, D., et al. (2008). Temporal dynamics of parietal activity during word-location binding: Neuropsychology Vol 22(1) Jan 2008, 85-99.
  • Campo, P., Maestu, F., Ortiz, T., Capilla, A., Santiuste, M., Fernandez, A., et al. (2005). Time Modulated Prefrontal and Parietal Activity during the Maintenance of Integrated Information as Revealed by Magnetoencephalography: Cerebral Cortex Vol 15(2) Feb 2005, 123-130.
  • Canive, J. M., Lewine, J. D., Edgar, J. C., Davis, J. T., & et al. (1996). Magnetoencephalographic assessment in spontaneous brain activity in schizophrenia: Psychopharmacology Bulletin Vol 32(4) 1996, 741-750.
  • Canive, J. M., Lewine, J. D., Edgar, J. C., Davis, J. T., Miller, G. A., Torres, F., et al. (1998). Spontaneous brain magnetic activity in schizophrenic patients treated with aripiprazole: Psychopharmacology Bulletin Vol 34(1) 1998, 101-105.
  • Cardy, J. E. O., Flagg, E. J., Roberts, W., Brian, J., & Roberts, T. P. L. (2005). Magnetoencephalography identifies rapid temporal processing deficit in autism and language impairment: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(4) Mar 2005, 329-332.
  • Carter, R. T., Akinsulure-Smith, A. M., Narici, L., & Peresson, M. (1995). Discrimination and study of rhythmical brain activities in the alpha band: A neuromagnetic frequency responsiveness test: Brain Research Vol 703(1-2) Dec 1995, 31-44.
  • Carver, F. W., Fuchs, A., Jantzen, K. J., & Kelso, J. A. S. (2002). Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: Rate dependence and transient to steady-state transition: Clinical Neurophysiology Vol 113(12) Dec 2002, 1921-1931.
  • Casini, L., Romaiguere, P., Ducorps, A., Schwartz, D., Anton, J.-L., & Roll, J.-P. (2006). Cortical correlates of illusory hand movement perception in humans: A MEG study: Brain Research Vol 1121(1) Nov 2006, 200-206.
  • Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural Response Correlates of Detection of Monaurally and Binaurally Created Pitches in Humans: Cerebral Cortex Vol 16(6) Jun 2006, 835-848.
  • Chen, A. C. (1993). Human brain measures of clinical pain: A review: I. Topographic mappings: Pain Vol 54(2) Aug 1993, 115-132.
  • Chen, J.-T., Chen, C.-C., Kao, K.-P., Wu, Z.-A., & Liao, K.-K. (1999). Effect of stimulation of an upper limb on motor evoked potentials in lower limb, muscles to transcranial magnetic stimulation in normal subjects and patients with thalamic infarction: Clinical Neurophysiology Vol 110(3) Mar 1999, 499-507.
  • Cheyne, D., Bostan, A. C., Gaetz, W., & Pang, E. W. (2007). Event-related beamforming: A robust method for presurgical functional mapping using MEG: Clinical Neurophysiology Vol 118(8) Aug 2007, 1691-1704.
  • Cheyne, D., Gaetz, W., Garnero, L., Lachaux, J.-P., Ducorps, A., Schwartz, D., et al. (2003). Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation: Cognitive Brain Research Vol 17(3) Oct 2003, 599-611.
  • Cichocki, A. (2007). Generalized component analysis and blind source separation methods for analyzing multichannel brain signals: Wenger, Michael J (Ed); Schuster, Christof (Ed).
  • Classen, J., Schnitzler, A., Binkofski, F., Werhahn, K. J., Kim, Y.-S., Kessler, K. R., et al. (1997). The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic stroke: Brain: A Journal of Neurology Vol 120(4) Apr 1997, 605-619.
  • Clementz, B. A., Blumenfeld, L. D., & Cobb, S. (1997). The gamma band response may account for poor P50 suppression in schizophrenia: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 8(18) Dec 1997, 3889-3893.
  • Cornelissen, P., Tarkiainen, A., Helenius, P., & Salmelin, R. (2003). Cortical Effects of Shifting Letter Position in Letter Strings of Varying Length: Journal of Cognitive Neuroscience Vol 15(5) Jul 2003, 731-746.
  • Costa, M., Braun, C., & Birbaumer, N. (2003). Gender differences in response to pictures of nudes: A magnetoencephalographic study: Biological Psychology Vol 63(2) May 2003, 129-147.
  • Criado, J. R., Amo, C., Quint, P., Kurelowech, L., & Otis, S. M. (2007). Using Magnetoencephalography to Study Patterns of Brain Magnetic Activity in Alzheimer's Disease: American Journal of Alzheimer's Disease and Other Dementias Vol 21(6) Dec-Jan 2007, 416-423.
  • Dale, A. M. (1995). Source localization and spatial discriminant analysis of event-related potentials: Linear approaches. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Deeny, S. P. (2006). Exercise behavior and maintenance of cerebral cortical activity during cognitive challenge in middle-aged men and women genetically at risk for dementia: A magnetoencephalographic study. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Del Gratta, C., & Romani, G. L. (2003). Magnetoencephalography: From Pioneering Studies to Functional Brain Imaging. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Dhond, R. P., Buckner, R. L., Dale, A. M., Marinkovic, K., & Halgren, E. (2001). Spatiotemporal maps of brain activity underlying word generation and their modification during repetition priming: Journal of Neuroscience Vol 21(10) May 2001, 3564-3571.
  • Diesch, E., Biermann, S., & Luce, T. (1998). The magnetic mismatch field elicited by words and phonological non-words: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(3) Feb 1998, 455-460.
  • Draganova, R., Eswaran, H., Murphy, P., Lowery, C., & Preissl, H. (2007). Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses: Early Human Development Vol 83(3) Mar 2007, 199-207.
  • Duzel, E. (2000). When, where, what: The electromagnetic contribution to the WWW of brain activity during recognition: Acta Psychologica Vol 105(2-3) Dec 2000, 195-210.
  • Embick, D., Hackl, M., Schaeffer, J., Kelepir, M., & Marantz, A. (2001). A magnetoencephalographic component whose latency reflects lexical frequency: Cognitive Brain Research Vol 10(3) Jan 2001, 345-348.
  • Epstein, C. M. (2003). Dipoles and dementia: Journal of Neurology, Neurosurgery & Psychiatry Vol 74(2) Feb 2003, 147-148.
  • Eswaran, H., Wilson, J. D., Preissl, H., Robinson, S. E., Vrba, J., Murphy, P., et al. (2002). Magnetoencephalographic recordings of visual evoked brain activity in the human fetus: Lancet Vol 360(9335) Sep 2002, 779-780.
  • Eulitz, C., Elbert, T., Bartenstein, P., Weiller, C., & et al. (1994). Comparison of magnetic and metabolic brain activity during a verb generation task: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 6(1) Dec 1994, 97-100.
  • Eulitz, C., Eulitz, H., Maess, B., Cohen, R., Pantev, C., & Elbert, T. (2000). Magnetic brain activity evoked and induced by visually presented words and nonverbal stimuli: Psychophysiology Vol 37(4) Jul 2000, 447-455.
  • Eulitz, C., Obleser, J., & Lahiri, A. (2004). Intra-subject replication of brain magnetic activity during the processing of speech sounds: Cognitive Brain Research Vol 19(1) Mar 2004, 82-91.
  • Fehr, T., Kissler, J., Moratti, S., Weinbruch, C., Rockstroh, B., & Elbert, T. (2001). Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients: Biological Psychiatry Vol 50(2) Jul 2001, 108-116.
  • Fehr, T., Kissler, J., Wienbruch, C., Moratti, S., Elbert, T., Watzl, H., et al. (2003). Source distribution of neuromagnetic slow-wave activity in schizophrenic patients-effects of activation: Schizophrenia Research Vol 63(1-2) Sep 2003, 63-71.
  • Fell, J., Roschke, J., Grozinger, M., Hinrichs, H., & Heinze, H.-J. (2000). Alterations of continuous MEG measures during mental activities: Neuropsychobiology Vol 42(2) Jul 2000, 99-106.
  • Fernandez, A., Garcia-Segura, J. M., Ortiz, T., Montoya, J., Maestu, F., Gil-Gregorio, P., et al. (2005). Proton Magnetic Resonance Spectroscopy and Magnetoencephalographic Estimation of Delta Dipole Density: A Combination of Techniques That May Contribute to the Diagnosis of Alzheimer's Disease: Dementia and Geriatric Cognitive Disorders Vol 20(2-3) Aug 2005, 169-177.
  • Fernandez, A., Hornero, R., Mayo, A., Poza, J., Maestu, F., & Alonso, T. O. (2006). Quantitative Magnetoencephalography of Spontaneous Brain Activity in Alzheimer Disease: An exhaustive frequency analysis: Alzheimer Disease & Associated Disorders Vol 20(3) Jul-Sep 2006, 153-159.
  • Fernandez, A., Hornero, R., Mayo, A. n., Poza, J., Gil-Gregorio, P., & Ortiz, T. (2006). MEG spectral profile in Alzheimer's disease and mild cognitive impairment: Clinical Neurophysiology Vol 117(2) Feb 2006, 306-314.
  • Fernandez, A., Turrero, A., Zuluaga, P., Gil, P., Maestu, F., Campo, P., et al. (2006). Magnetoencephalographic Parietal delta Dipole Density in Mild Cognitive Impairment: Preliminary Results of a Method to Estimate the Risk of Developing Alzheimer Disease: Archives of Neurology Vol 63(3) Mar 2006, 427-430.
  • Ferree, T. C., Kramer, M. A., McGonigle, D. J., & Hwa, R. C. (2007). Quantifying scaling properties of neurophysiological time series: Wenger, Michael J (Ed); Schuster, Christof (Ed).
  • Fingelkurts, A. A., Fingelkurts, A. A., & Krause, C. M. (2007). Composition of brain oscillations and their functions in the maintenance of auditory, visual and audio-visual speech percepts: An exploratory study: Cognitive Processing Vol 8(3) Sep 2007, 183-199.
  • Friston, K., Henson, R., Phillips, C., & Mattout, J. (2006). Bayesian Estimation of Evokes and Induced Responses: Human Brain Mapping Vol 27(9) Sep 2006, 722-735.
  • Fujiki, N., Riederer, K. A. J., Jousmaki, V., Makela, J. P., & Hari, R. (2002). Human cortical representation of virtual auditory space: Differences between sound azimuth and elevation: European Journal of Neuroscience Vol 16(11) Dec 2002, 2207-2213.
  • Fujiwara, N., Nagamine, T., Imai, M., Tanaka, T., & Shibasaki, H. (1998). Role of the primary auditory cortex in auditory selective attention studied by whole-head neuromagnetometer: Cognitive Brain Research Vol 7(2) Oct 1998, 99-109.
  • Gage, N., Poeppel, D., Roberts, T. P. L., & Hickok, G. (1998). Auditory evoked M100 reflects onset acoustics of speech sounds: Brain Research Vol 814(1-2) Dec 1998, 236-239.
  • Gaillard, W. D., Hertz-Pannier, L., Mott, S. H., Barnett, A. S., LeBihan, D., & Theodore, W. H. (2000). Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults: Neurology Vol 54(1) Jan 2000, 180-185.
  • Garcia-Toro, M., Montes, J. M., & Talavera, J. A. (2001). Functional cerebral asymmetry in affective disorders: New facts contributed by transcranial magnetic stimulation: Journal of Affective Disorders Vol 66(2-3) Oct 2001, 103-109.
  • Gerloff, C., Braun, C., Staudt, M., Hegner, Y. L., Dichgans, J., & Krageloh-Mann, I. (2006). Coherent Corticomuscular Oscillations Originate From Primary Motor Cortex: Evidence from Patients with Early Brain Lesions: Human Brain Mapping Vol 27(10) Oct 2006, 789-798.
  • Godey, B., Schwartz, D., de Graaf, J. B., Chauvel, P., & Liegeois-Chauvel, C. (2001). Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: A comparison of data in the same patients: Clinical Neurophysiology Vol 112(10) Oct 2001, 1850-1859.
  • Gondo, K., Tobimatsu, S., Kira, R., Tokunaga, Y., Yamamoto, T., & Hara, T. (2001). A magnetoencephalographic study on development of the somatosensory cortex in infants: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(15) Oct 2001, 3227-3231.
  • Gunji, A., Hoshiyama, M., & Kakigi, R. (2001). Auditory response following vocalization: A magnetoencephalographic study: Clinical Neurophysiology Vol 112(3) Mar 2001, 514-520.
  • Gunji, A., Kakigi, R., & Hoshiyama, M. (2000). Spatiotemporal source analysis of vocalization-associated magnetic fields: Cognitive Brain Research Vol 9(2) Mar 2000, 157-163.
  • Hajek, M., Boehle, C., Huonker, R., Volz, H.-P., Nowak, H., Schrott, P. R., et al. (1997). Abnormalities of auditory evoked magnetic fields in the right hemisphere of schizophrenic females: Schizophrenia Research Vol 24(3) Apr 1997, 329-332.
  • Halford, J. J. (2003). Neurophysiologic correlates of psychiatric disorders and potential applications in epilepsy: Epilepsy & Behavior Vol 4(4) Aug 2003, 375-385.
  • Hall, S. D., Barnes, G. R., Hillebrand, A., Furlong, P. L., Singh, K. D., & Holliday, I. E. (2004). Spatio-temporal Imaging of Cortical Desynchronization in Migraine Visual Aura: A Magnetoencephalography Case Study: Headache: The Journal of Head and Face Pain Vol 44(3) Mar 2004, 204-208.
  • Hamada, T. (2005). A neuromagnetic analysis of the mechanism for generating auditory evoked fields: International Journal of Psychophysiology Vol 56(2) May 2005, 93-104.
  • Hamada, T., & Yamaguch, M. (2001). Evoked and oscillatory neuromagnetic responses to sniffing odor in human subjects: Behavioural Brain Research Vol 123(2) 2001, 219-223.
  • Hamada, Y., & Suzuki, R. (2003). Hand posture modulates neuronal interaction in the primary somatosensory cortex of humans: Clinical Neurophysiology Vol 114(9) Sep 2003, 1689-1696.
  • Hanlon, F. M. (2004). A quest to characterize a specific hippocampal deficit in schizophrenia using behavioral and magnetoencephalographic measures. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Hanlon, F. M., Weisend, M. P., Yeo, R. A., Huang, M., Lee, R. R., Thoma, R. J., et al. (2005). A Specific Test of Hippocampal Deficit in Schizophrenia: Behavioral Neuroscience Vol 119(4) Aug 2005, 863-875.
  • Hari, R., Levanen, S., & Raij, T. (2000). Timing of human cortical functions during cognition: Role of MEG: Trends in Cognitive Sciences Vol 4(12) Dec 2000, 455-462.
  • Hari, R., & Lounasmaa, O. V. (1989). Recording and interpretation of cerebral magnetic fields: Science Vol 244(4903) Apr 1989, 432-436.
  • Hari, R., Rif, J., Tiihonen, J., & Sams, M. (1992). Neuromagnetic mismatch fields to single and paired tones: Electroencephalography & Clinical Neurophysiology Vol 82(2) Feb 1992, 152-154.
  • Harris, A., & Nakayama, K. (2007). Rapid Face-Selective Adaptation of an Early Extrastriate Component in MEG: Cerebral Cortex Vol 17(1) Jan 2007, 63-70.
  • Harris, A. M. (2006). Face-selectivity of the M170 response in developmental prosopagnosia and double-pulse adaptation. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Hashimoto, T., Hirata, Y., & Kuriki, S. (2000). Auditory cortex responds in 100 ms to incongruity of melody: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(12) Aug 2000, 2799-2801.
  • Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception: Journal of Cognitive Neuroscience Vol 13(6) Aug 2001, 786-792.
  • Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2000). Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50/M100 fields: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(18) Dec 2000, 4017-4020.
  • Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2004). Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli: Neuropsychologia Vol 42(13) 2004, 1814-1826.
  • Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L., & Barnes, G. R. (2005). A New Approach to Neuroimaging With Magnetoencephalography: Human Brain Mapping Vol 25(2) Jun 2005, 199-211.
  • Hirose, H., Kubota, M., Kimura, I., Yumoto, M., & Sakakihara, Y. (2003). N1OOm in children possessing absolute pitch: Neuroreport: For Rapid Communication of Neuroscience Research Vol 14(6) Mar 2003, 899-903.
  • Holliday, I. E., & Meese, T. S. (2005). Neuromagnetic evoked responses to complex motions are greatest for expansion: International Journal of Psychophysiology Vol 55(2) Feb 2005, 145-157.
  • Horiguchi, T., Ohta, K., Kaga, M., & Nishikawa, T. (2002). An MEG study of P300 during a color discrimination task: Journal of Mental Health No 48 2002, 53-58.
  • Hoshiyama, M., Gunji, A., & Kakigi, R. (2001). Hearing the sound of silence: A magnetoencephalographic study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(6) May 2001, 1097-1102.
  • Hoshiyama, M., Koyama, S., Kitamura, Y., Shimojo, M., & et al. (1996). Effects of judgement process on motor evoked potentials in Go/No-go hand movement task: Neuroscience Research Vol 24(4) Mar 1996, 427-430.
  • Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: An MEG study: Journal of Cognitive Neuroscience Vol 14(8) Nov 2002, 1125-1138.
  • Howland, E. W., Wakai, R. T., Mjaanes, B. A., Balog, J. P., & et al. (1995). Whole head mapping of magnetic fields following painful electric finger shock: Cognitive Brain Research Vol 2(3) Jul 1995, 165-172.
  • Huang, M., Aine, C. J., Supek, S., Best, E., Ranken, D., & Flynn, E. R. (1998). Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 108(1) Jan 1998, 32-44.
  • Huang, M. X., Edgar, J. C., Thoma, R. J., Hanlon, F. M., Moses, S. N., Lee, R. R., et al. (2003). Predicting EEG responses using MEG sources in superior temporal gyrus reveals source asynchrony in patients with schizophrenia: Clinical Neurophysiology Vol 114(5) May 2003, 835-850.
  • Huizenga, H. M., Heslenfeld, D. J., & Molenaar, P. C. M. (2002). Optimal measurement conditions for spatiotemporal EEG/MEG source analysis: Psychometrika Vol 67(2) Jun 2002, 299-313.
  • Huotilainen, M., Ilmoniemi, R. J., Lavikainen, J., Tiitinen, H., & et al. (1993). Interaction between representations of different features of auditory sensory memory: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 4(11) Nov 1993, 1279-1281.
  • Huotilainen, M., Kujala, A., Hotakainen, M., Shestakova, A., Kushnerenko, E., Parkkonen, L., et al. (2003). Auditory magnetic responses of healthy newborns: Neuroreport: For Rapid Communication of Neuroscience Research Vol 14(14) Oct 2003, 1871-1875.
  • Im, C.-H., Jung, H.-K., & Fujimaki, N. (2005). fMRI-Constrained MEG Source Imaging and Consideration of fMRI Invisible Sources: Human Brain Mapping Vol 26(2) Oct 2005, 110-118.
  • Inui, K., Wang, X., Tamura, Y., Kaneoke, Y., & Kakigi, R. (2004). Serial Processing in the Human Somatosensory System: Cerebral Cortex Vol 14(8) Aug 2004, 851-857.
  • Ioannides, A. A., Fenwick, P. B. C., & Liu, L. (2005). Widely Distributed Magnetoencephalography Spikes Related to the Planning and Execution of Human Saccades: Journal of Neuroscience Vol 25(35) Aug 2005, 7950-7967.
  • Ioannides, A. A., Kostopoulos, G. K., Laskaris, N. A., Liu, L., Shibata, T., Schellens, M., et al. (2002). Timing and connectivity in the human somatosensory cortex from single trial mass electrical activity: Human Brain Mapping Vol 15(4) Apr 2002, 231-246.
  • Ioannides, A. A., Liu, L., Theofilou, D., Dammers, J., Burne, T., Ambler, T., et al. (2000). Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals: Brain Topography Vol 13(1) Fal 2000, 11-19.
  • Ioannides, A. A., Liu, M. J., Liu, L. C., Bamidis, P. D., Hellstrand, E., & Stephan, K. M. (1995). Magnetic field tomography of cortical and deep processes: Examples of "real-time mapping" of averaged and single trial MEG signals: International Journal of Psychophysiology Vol 20(3) Dec 1995, 161-175.
  • Ioannides, A. A., Singh, K. D., Hasson, R., Baumann, S. B., & et al. (1993). Comparison of single current dipole and magnetic field tomography analyses of the cortical response to auditory stimuli: Brain Topography Vol 6(1) Fal 1993, 27-34.
  • Iramina, K., & Ueno, S. (1996). Source estimation of spontaneous MEG activity and auditory evoked responses in normal subjects during sleep: Brain Topography Vol 8(3) Spr 1996, 297-301.
  • Ishibashi, H., Tobimatsu, S., Shigeto, H., Morioka, T., Yamamoto, T., & Fukui, M. (2000). Differential interaction of somatosensory inputs in the human primary sensory cortex: A magnetoencephalographic study: Clinical Neurophysiology Vol 111(6) Jun 2000, 1095-1102.
  • Ishii, R., Canuet, L., Iwase, M., Kurimoto, R., Ikezawa, K., Robinson, S. E., et al. (2006). Right parietal activation during delusional state in episodic interictal psychosis of epilepsy: A report of two cases: Epilepsy & Behavior Vol 9(2) Aug 2006, 367-372.
  • Ishii, R., Shinosaki, K., Ikejiri, Y., Ukai, S., Yamashita, K., Iwase, M., et al. (2000). Theta rhythm increases in left superior temporal cortex during auditory hallucinations in schizophrenia: A case report: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(14) Sep 2000, 3283-3287.
  • Itier, R. J., Herdman, A. T., George, N., Cheyne, D., & Taylor, M. J. (2006). Inversion and contrast-reversal effects on face processing assessed by MEG: Brain Research Vol 1115(1) Oct 2006, 108-120.
  • Iwasaki, M., Nakasato, N., Kanno, A., Hatanaka, K., Nagamatsu, K.-i., Nagamine, Y., et al. (2001). Somatosensory evoked fields in comatose survivors after severe traumatic brain injury: Clinical Neurophysiology Vol 112(1) Jan 2001, 205-211.
  • Jantzen, K. J., Fuchs, A., Mayville, J. M., Deecke, L., & Kelso, J. A. S. (2001). Neuromagnetic activity in alpha and beta bands reflect learning-induced increases in coordinative stability: Clinical Neurophysiology Vol 112(9) Sep 2001, 1685-1697.
  • Jarema, M., Aguglia, E., & Guy, W. (1987). The practical value of nuclear magnetic resonance in psychiatry: New Trends in Experimental & Clinical Psychiatry Vol 3(3-4) Jul-Dec 1987, 213-218.
  • Jaskiw, G. E., Andreasen, N. C., & Weinberger, D. R. (1987). X-ray computed tomography and magnetic resonance imaging in psychiatry. Washington, DC: American Psychiatric Association.
  • Johnson, R. T., Hirschkoff, E. C., & Buchanan, D. S. (2003). Full-Sensitivity Biomagnetometers: Sam Williamson's Vision Brought to Life. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Jousmaki, V. (2000). Tracking functions of cortical networks on a millisecond timescale: Neural Networks Vol 13(8-9) Oct-Nov 2000, 883-889.
  • Jousmaki, V., & Forss, N. (1998). Effects of stimulus intensity on signals from human somatosensory cortices: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(15) Oct 1998, 3427-2431.
  • Jousmaki, V., & Hari, R. (1999). Somatosensory evoked fields to large-area vibrotactile stimuli: Clinical Neurophysiology Vol 110(5) May 1999, 905-909.
  • Jousmaki, V., Nishitani, N., & Hari, R. (2007). A brush stimulator for functional brain imaging: Clinical Neurophysiology Vol 118(12) Dec 2007, 2620-2624.
  • Joutsiniemi, S. L., Hari, R., & Vilkman, V. (1989). Cerebral magnetic responses to noise bursts and pauses of different durations: Audiology Vol 28(6) Nov-Dec 1989, 325-333.
  • Kagiki, R., Koyama, S., Hoshiyama, M., & Kitamura, Y. (1996). Effects of tactile interference stimulation on somatosensory evoked magnetic fields: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(2) Jan 1996, 405-408.
  • Kahkonen, S. (2006). Magnetoencephalography (MEG): A non-invasive tool for studying cortical effects in psychopharmacology: International Journal of Neuropsychopharmacology Vol 9(3) Jun 2006, 367-372.
  • Kahkonen, S., Ahveninen, J., Pekkonen, E., Kaakkola, S., Huttunen, J., Ilmoniemi, R. J., et al. (2002). Dopamine modulates involuntary attention shifting and reorienting: An electromagnetic study: Clinical Neurophysiology Vol 113(12) Dec 2002, 1894-1902.
  • Kahkonen, S., Yamashita, H., Rytsala, H., Suominen, K., Ahveninen, J., & Isometsa, E. (2007). Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG: Journal of Psychiatry & Neuroscience Vol 32(5) Sep 2007, 316-322.
  • Kaiser, J., Lutzenberger, W., Ackermann, H., & Birbaumer, N. (2002). Dynamics of gamma-band activity induced by auditory pattern changes in humans: Cerebral Cortex Vol 12(2) Feb 2002, 212-221.
  • Kaiser, J., Lutzenberger, W., Preissl, H., Ackermann, H., & Birbaumer, N. (2000). Right-hemisphere dominance for the processing of sound-source lateralization: Journal of Neuroscience Vol 20(17) Sep 2000, 6631-6639.
  • Kajihara, S., Ohtani, Y., Goda, N., Tanigawa, M., Ejima, Y., & Toyama, K. (2004). Wiener Filter-Magnetoencephalography of Visual Cortical Activity: Brain Topography Vol 17(1) Fal 2004, 13-25.
  • Kakigi, R. (1994). Somatosensory evoked magnetic fields following median nerve stimulation: Neuroscience Research Vol 20(2) Aug 1994, 165-174.
  • Kakigi, R., Nakata, H., Inui, K., Hiroe, N., Nagata, O., Honda, M., et al. (2005). Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation: European Journal of Pain Vol 9(5) Oct 2005, 581-589.
  • Kamada, K., Kober, H., Saguer, M., Moller, M., Kaltenhauser, M., & Vieth, J. (1998). Responses to silent Kanji reading of the native Japanese and German in task subtraction magnetoencephalography: Cognitive Brain Research Vol 7(1) Jul 1998, 89-98.
  • Kassubek, J., Soros, P., Kober, H., Stippich, C., & Vieth, J. B. (1999). Focal slow and beta brain activity in patients with multiple sclerosis revealed by magnetoencephalography: Brain Topography Vol 11(3) Spr 1999, 193-200.
  • Kato, Y., Muramatsu, T., Kato, M., Shibukawa, Y., Shintani, M., & Yoshino, F. (2006). Cortical reorganization and somatic delusional psychosis: A magnetoencephalographic study: Psychiatry Research: Neuroimaging Vol 146(1) Jan 2006, 91-95.
  • Kaufman, L., Okada, Y., Tripp, J., & Weinberg, H. (1984). Evoked neuromagnetic fields: Annals of the New York Academy of Sciences Vol 425 Jun 1984, 722-742.
  • Kauhanen, L., Nykopp, T., & Sams, M. (2006). Classification of single MEG trials related to left and right index finger movements: Clinical Neurophysiology Vol 117(2) Feb 2006, 430-439.
  • Kekoni, J., Tiihonen, J., & Hamalainen, H. (1992). Fast decrement with stimulus repetition in ERPs generated by neuronal systems involving somatosensory SI and SII cortices: Electric and magnetic evoked response recordings in humans: International Journal of Psychophysiology Vol 12(3) May 1992, 281-288.
  • Kiebel, S. J., Tallon-Baudry, C., & Friston, K. J. (2005). Parametric analysis of oscillatory activity as measured with EEG/MEG: Human Brain Mapping Vol 26(3) Nov 2005, 170-177.
  • Kikuchi, Y., Endo, H., Yoshizawa, S., Kait, M., & et al. (1997). Human cortico-hippocampal activity related to auditory discrimination revealed by neuromagnetic field: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 8(7) May 1997, 1657-1661.
  • Kincses, W. E., Braun, C., Kaiser, S., Grodd, W., Ackermann, H., & Mathiak, K. (2003). Reconstruction of Extended Cortical Sources for EEG and MEG Based on a Monte-Carlo-Markov-Chain Estimator: Human Brain Mapping Vol 18(2) Feb 2003, 100-110.
  • Kissler, J., Muller, M. M., Fehr, T., Rockstroh, B., & Elbert, T. (2000). MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest: Clinical Neurophysiology Vol 111(11) Nov 2000, 2079-2087.
  • Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., & et al. (1995). Pain-related somatosensory evoked magnetic fields: Electroencephalography & Clinical Neurophysiology Vol 95(6) Dec 1995, 463-474.
  • Knosche, T. R., Neuhaus, C., Haueisen, J., Alter, K., Maess, B., Witte, O. W., et al. (2005). Perception of Phrase Structure in Music: Human Brain Mapping Vol 24(4) Apr 2005, 259-273.
  • Knowlton, R. C. (2006). The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation: Epilepsy & Behavior Vol 8(1) Feb 2006, 91-101.
  • Kober, H., Moller, M., Nimsky, C., Vieth, J., Fahlbusch, R., & Ganslandt, O. (2001). New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography: Human Brain Mapping Vol 14(4) Dec 2001, 236-250.
  • Kotini, A., & Anninos, P. (2002). Detection of non-linearity in schizophrenic patients using magnetoencephalography: Brain Topography Vol 15(2) Win 2002, 107-113.
  • Kotini, A., Anninos, P., Adamopoulos, A., & Prassopoulos, P. (2005). Low-Frequency MEG Activity and MRI Evaluation in Parkinson's Disease: Brain Topography Vol 18(1) Fal 2005, 59-63.
  • Kowalik, Z. J., & Elbert, T. (1994). Changes of chaoticness in spontaneous EEG/MEG: Integrative Physiological & Behavioral Science Vol 29(3) Jul-Sep 1994, 270-282.
  • Kreitschmann-Andermahr, I., Rosburg, T., Meier, T., Volz, H. P., Nowak, H., & Sauer, H. (1999). Impaired sensory processing in male patients with schizophrenia: A magnetoencephalographic study of auditory mismatch detection: Schizophrenia Research Vol 35(2) Jan 1999, 121-129.
  • Kringelbach, M. L., Jenkinson, N., Green, A. L., Owen, S. L. F., Hansen, P. C., Cornelissen, P. L., et al. (2007). Deep brain stimulation for chronic pain investigated with magnetoencephalography: Neuroreport: For Rapid Communication of Neuroscience Research Vol 18(3) Feb 2007, 223-228.
  • Krings, T., Buchbinder, B. R., Butler, W. E., Chiappa, K. H., & et al. (1997). Functional magnetic resonance imaging and transcranial magnetic stimulation: Complementary approaches in the evaluation of cortical motor function: Neurology Vol 48(5) May 1997, 1406-1416.
  • Kristeva, R., Cheyne, D., & Deecke, L. (1991). Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: Topography and analysis of cortical sources: Electroencephalography & Clinical Neurophysiology: Electromyography & Motor Control Vol 81(4) Aug 1991, 284-298.
  • Kristeva-Feige, R., Rossi, S., Feige, B., Mergner, T., Lucking, C. H., & Rossini, P. M. (1997). The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography (MEG): Brain Research Protocols Vol 1(1) Feb 1997, 13-22.
  • Kristeva-Feige, R., Rossi, S., Pizzella, V., Tecchio, F., & et al. (1995). Neuromagnetic fields of the brain evoked by voluntary movement and electrical stimulation of the index finger: Brain Research Vol 682(1-2) Jun 1995, 22-28.
  • Kubota, T., Kaneoke, Y., Maruyama, K., Watanabe, K., & Kakigi, R. (2004). Temporal structure of the apparent motion perception: A magnetoencephalographic study: Neuroscience Research Vol 48(1) Jan 2004, 111-118.
  • Kudo, N., Kasai, K., Itoh, K., Koshida, I., Yumoto, M., Kato, M., et al. (2006). Comparison between mismatch negativity amplitude and magnetic mismatch field strength in normal adults: Biological Psychology Vol 71(1) Jan 2006, 54-62.
  • Kuperberg, G. R. (2004). Electroencephalography, Event-Related Potentials, and Magnetoencephalography. Washington, DC: American Psychiatric Publishing, Inc.
  • Kuriki, S., Kanda, S., & Hirata, Y. (2006). Effects of Musical Experience on Different Components of MEG Responses Elicited by Sequential Piano-Tones and Chords: Journal of Neuroscience Vol 26(15) Apr 2006, 4046-4053.
  • Kuriki, S., Mori, T., & Hirata, Y. (1999). Motor planning center for speech articulation in the normal human brain: Neuroreport: For Rapid Communication of Neuroscience Research Vol 10(4) Mar 1999, 765-769.
  • Kwon, H., Kuriki, S., Kim, J. M., Lee, Y. H., Kim, K., & Nam, K. (2005). MEG study on neural activities associated with syntactic and semantic violations in spoken Korean sentences: Neuroscience Research Vol 51(4) Apr 2005, 349-357.
  • Kylliainen, A., Braeutigam, S., Hietanen, J. K., Swithenby, S. J., & Bailey, A. J. (2006). Face- and gaze-sensitive neural responses in children with autism: A magnetoencephalographic study: European Journal of Neuroscience Vol 24(9) Nov 2006, 2679-2690.
  • Langheim, F. J. P., Leuthold, A. C., & Georgopoulos, A. P. (2006). Synchronous dynamic brain networks revealed by magnetoencephalography: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(2) Jan 2006, 455-459.
  • Laskaris, N. A., & Ioannides, A. A. (2002). Semantic geodesic maps: A unifying geometrical approach for studying the structure and dynamics of single trial evoked responses: Clinical Neurophysiology Vol 113(8) Aug 2002, 1209-1226.
  • Lattner, S., Maess, B., Wang, Y., Schauer, M., Alter, K., & Friederici, A. D. (2003). Dissociation of human and computer voices in the brain: Evidence for a preattentive Gestalt-like perception: Human Brain Mapping Vol 20(1) Sep 2003, 13-21.
  • Laudahn, R., Kohlhoff, H., & Bromm, B. (1995). Magnetoencephalography in the investigation of cortical pain processing. New York, NY: Raven Press.
  • Lee, D. (2007). Recognition memory of the human face: A magnetoencephalography study. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Lee, D., Sawrie, S. M., Simos, P. G., Killen, J., & Knowlton, R. C. (2006). Reliability of language mapping with magnetic source imaging in epilepsy surgery candidates: Epilepsy & Behavior Vol 8(4) Jun 2006, 742-749.
  • Lee, D., Simos, P., Sawrie, S. M., Martin, R. C., & Knowlton, R. C. (2005). Dynamic Brain Activation Patterns for Face Recognition: A Magnetoencephalography Study: Brain Topography Vol 18(1) Fal 2005, 19-26.
  • Leon-Carrion, J., McManis, M. H., Castillo, E. M., & Papanicolaou, A. C. (2006). Time-locked brain activity associated with emotion: A pilot MEG study: Brain Injury Vol 20(8) Jul 2006, 857-865.
  • Levanen, S., Uutela, K., Salenius, S., & Hari, R. (2001). Cortical representation of sign language: Comparison of deaf signers and hearing non-signers: Cerebral Cortex Vol 11(7) Jun 2001, 506-512.
  • Levin, H. S., High, W. M., Williams, D. H., Eisenberg, H. M., & et al. (1989). Dichotic listening and manual performance in relation to magnetic resonance imaging after closed head injury: Journal of Neurology, Neurosurgery & Psychiatry Vol 52(10) Oct 1989, 1162-1169.
  • Lewine, J. D., Davis, J. T., Bigler, E. D., Thoma, R., Hill, D., Funke, M., et al. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: Multimodal brain imaging with MEG, SPECT, and MRI: Journal of Head Trauma Rehabilitation Vol 22(3) May-Jun 2007, 141-155.
  • Li, L. P. H., Shiao, A. S., Chen, L. F., Niddam, D. M., Chang, S. Y., Lien, C. F., et al. (2006). Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss: European Journal of Neuroscience Vol 24(3) Aug 2006, 937-946.
  • Lin, Y.-Y., Chang, K.-P., Hsieh, J.-C., Yeh, T.-C., Yu, H.-Y., Kwan, S.-Y., et al. (2003). Magnetoencephalographic analysis of bilaterally synchronous discharges in benign rolandic epilepsy of childhood: Seizure Vol 12(7) Oct 2003, 448-455.
  • Lin, Y.-Y., Liao, K.-K., Chen, J.-T., Yeh, T.-C., Shih, Y.-H., Wu, Z.-A., et al. (2006). Neural correlates of Chinese word-appropriateness judgment: An MEG study: International Journal of Psychophysiology Vol 62(1) Oct 2006, 122-133.
  • Lippa, R. L. (2007). Telesupport, Black Box Warnings, and Magnetoencephalography: American Journal of Alzheimer's Disease and Other Dementias Vol 21(6) Dec-Jan 2007, 387-388.
  • Liu, L., & Ioannides, A. A. (2004). MEG Study of Short-Term Plasticity Following Multiple Digit Frequency Discrimination Training in Humans: Brain Topography Vol 16(4) Sum 2004, 239-243.
  • Liu, L., Ioannides, A. A., & Streit, M. (1999). Single trial analysis of neurophysiological correlates of the recognition of complex objects and facial expressions of emotion: Brain Topography Vol 11(4) Sum 1999, 291-303.
  • lmada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., & Kuhl, P. K. (2006). Infant speech perception activates Broca's area: A developmental magnetoencephalography study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 17(10) Jul 2006, 957-962.
  • Lounasmaa, O. V., & Hari, R. (2003). From 1- to 306-Channel Magnetoencephalography in 15 Years: Highlights of Neuromagnetic Brain Research in Finland. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Lu, B. Y., Edgar, J. C., Jones, A. P., Smith, A. K., Huang, M.-X., Miller, G. A., et al. (2007). Improved test-retest reliability of 50-ms paired-click auditory gating using magnetoencephalography source modeling: Psychophysiology Vol 44(1) Jan 2007, 86-90.
  • Lu, Z.-L., & Sperling, G. (2003). Measuring Sensory Memory: Magnetoencephalography Habituation and Psychophysics. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Lukka, T., Schoner, B., & Marantz, A. (2000). Phoneme discrimination from MEG data: Neurocomputing: An International Journal Vol 31(1-4) Mar 2000, 153-165.
  • Luo, H., Wang, Y., Poeppel, D., & Simon, J. Z. (2006). Concurrent Encoding of Frequency and Amplitude Modulation in Human Auditory Cortex: MEG Evidence: Journal of Neurophysiology Vol 96(5) Nov 2006, 2712-2723.
  • Maclin, E. L. (2003). Optical Imaging of Brain Function and the Relation Between Neuronal Activity and Hemodynamics in Health and Disease. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Maclin, E. L., Rose, D. F., Knight, J. E., Orrison, W. W., & et al. (1994). Somatosensory evoked magnetic fields in patients with stroke: Electroencephalography & Clinical Neurophysiology Vol 91(6) Dec 1994, 468-475.
  • Maess, B., Herrmann, C. S., Hahne, A., Nakamura, A., & Friederici, A. D. (2006). Localizing the distributed language network responsible for the N400 measured by MEG during auditory sentence processing: Brain Research Vol 1096(1) Jun 2006, 163-172.
  • Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca's area: An MEG study: Nature Neuroscience Vol 4(5) May 2001, 540-545.
  • Maestu, F., Fernandez, A., Simos, P. G., Gil-Gregorio, P., Amo, C., Rodriguez, R., et al. (2001). Spatio-temporal patterns of brain magnetic activity during a memory task in Alzheimer's disease: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(18) Dec 2001, 3917-3922.
  • Maestu, F., Gonzalez-Marques, J., Marty, G., Nadal, M., Cela-Conde, C. J., & Ortiz, T. (2005). Magnetoencephalography: A new methodology for the study of basic cognitive processes: Psicothema Vol 17(3) Aug 2005, 459-464.
  • Maestu, F., Paul, N., Munoz-Cespedes, J.-M., Campo, P., Rios, M., Alvarez-Linera, J., et al. (2005). Could activity in anterior frontal regions predict performance on declarative memory tests? : Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(4) Mar 2005, 337-341.
  • Maihofner, C., Handwerker, H. O., Neundorfer, B., & Birklein, F. (2003). Patterns of cortical reorganization in complex regional pain syndrome: Neurology Vol 61(12) Dec 2003, 1707-1715.
  • Maihofner, C., Neundorfer, B., Stefan, H., & Handwerker, H. O. (2003). Cortical processing of brush-evoked allodynia: Neuroreport: For Rapid Communication of Neuroscience Research Vol 14(6) Mar 2003, 785-789.
  • Maihofner, C., Ropohl, A., Reulbach, U., Hiller, M., Elstner, S., Kornhuber, J., et al. (2005). Effects of repetitive transcranial magnetic stimulation in depression: A magnetoencephalographic study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(16) Nov 2005, 1839-1842.
  • Maihofner, C., Sperling, W., Kaltenhauser, M., Bleich, S., de Zwaan, M., Wiltfang, J., et al. (2007). Spontaneous magnetoencephalographic activity in patients with obsessive-compulsive disorder: Brain Research Vol 1129(1) Jan 2007, 200-205.
  • Makela, J. P. (1996). Magnetoencephalography in psychiatry: Psychiatria Fennica Vol 27 1996, 39-54.
  • Makela, J. P., Ahonen, A., Hamalainen, M., Hari, R., Llmoniemi, R., Kajola, M., et al. (1993). Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings: Human Brain Mapping Vol 1(1) 1993, 48-56.
  • Makela, J. P., & Hari, R. (1994). Neuromagnetic cortical signals in a patient with hydrocephalus: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 5(9) May 1994, 1125-1128.
  • Malogiannia, I. A., Valaki, C., Smyrnis, N., Papathanasiou, M., Evdokimidis, I., Baras, P., et al. (2003). Functional magnetic resonance imaging (fMRI) during a language comprehension task: Journal of Neurolinguistics Vol 16(4-5) Jul-Sep 2003, 407-416.
  • Martin, T., Houck, J. M., Bish, J. P., Kicic, D., Woodruff, C. C., Moses, S. N., et al. (2006). MEG Reveals Different Contributions of Somatomotor Cortex and Cerebellum to Simple Reaction Time After Temporally Structured Cues: Human Brain Mapping Vol 27(7) Jul 2006, 552-561.
  • Mathiak, K., Hertrich, I., Lutzenberger, W., & Ackerman, H. (2002). Functional cerebral asymmetries of pitch processing during dichotic stimulus application: A whole-head magnetoencephalography study: Neuropsychologia Vol 40(6) 2002, 585-593.
  • Mazaheri, A., Jensen, O., & Kopell, N. J. (2006). Posterior alpha activity is not phase-reset by visual stimuli: PNAS Proceedings of the National Academy of Sciences of the United States of America Vol 103(8) Feb 2006, 2948-2952.
  • Meier, T., Rosburg, T., Arnold, M., Kreitschmann-Andermahr, I., Sauer, H., Nowak, H., et al. (1998). Quantification and rejection of ocular artifacts in auditory evoked fields in schizophrenics: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 108(6) Nov 1998, 526-535.
  • Meinhardt, J., & Muller, J. (2001). Motor response detection using fiber optices during functional resonance imaging: Behavior Research Methods, Instruments & Computers Vol 33(4) Nov 2001, 556-558.
  • Merrifield, W. S., Simos, P. G., Papanicolaou, A. C., Philpott, L. M., & Sutherling, W. W. (2007). Hemispheric language dominance in magnetoencephalography: Sensitivity, specificity, and data reduction techniques: Epilepsy & Behavior Vol 10(1) Feb 2007, 120-128.
  • Michel, C. M., Kaufman, L., & Williamson, S. J. (1994). Duration of EEG and MEG !a suppression increases with angle in a mental rotation task: Journal of Cognitive Neuroscience Vol 6(2) Spr 1994, 139-150.
  • Miki, K., Watanabe, S., Kakigi, R., & Puce, A. (2004). Magnetoencephalographic study of occipitotemporal activity elicited by viewing mouth movements: Clinical Neurophysiology Vol 115(7) Jul 2004, 1559-1574.
  • Miltner, W. H. R., Lemke, U., Weiss, T., Holroyd, C., Scheffers, M. K., & Coles, M. G. H. (2003). Implementation of error-processing in the human anterior cingulate cortex: a source analysis of the magnetic equivalent of the error-related negativity: Biological Psychology Vol 64(1-2) Oct 2003, 157-166.
  • Miyanari, A., Kaneoke, Y., lhara, A., Watanabe, S., Osaki, Y., Kubo, T., et al. (2006). Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans: Brain Topography Vol 18(3) Spr 2006, 189-199.
  • Mizoguchi, C., Kobayakawa, T., Saito, S., & Ogawa, H. (2002). Gustatory Evoked Cortical Activity in Humans Studied by Simultaneous EEG and MEG Recording: Chemical Senses Vol 27(7) Sep 2002, 629-634.
  • Mohamed, I. S., Otsubo, H., Donner, E., Ochi, A., Sharma, R., Drake, J., et al. (2007). Magnetoencephalography for surgical treatment of refractory status epilepticus: Acta Neurologica Scandinavica Vol 115(Suppl 186) Apr 2007, 29-36.
  • Moses, S. N., Houck, J. M., Martin, T., Hanlon, F. M., Ryan, J. D., Thoma, R. J., et al. (2007). Dynamic neural activity recorded from human amygdala during fear conditioning using magnetoencephalography: Brain Research Bulletin Vol 71(5) Mar 2007, 452-460.
  • Mottonen, R., Krause, C. M., Tiippana, K., & Sams, M. (2002). Processing of changes in visual speech in the human auditory cortex: Cognitive Brain Research Vol 13(3) May 2002, 417-425.
  • Muhlnickel, W., Rendtorff, N., Kowalik, Z. J., Rockstroh, B., & et al. (1994). Testing the determinism of EEG and MEG: Integrative Physiological & Behavioral Science Vol 29(3) Jul-Sep 1994, 262-269.
  • Muller, M. M. (2000). High frequency oscillatory neural activities in the human brain: Zeitschrift fur Experimentelle Psychologie Vol 47(4) 2000, 231-252.
  • Murata, T., Fujito, T., Kimura, H., Omori, M., Itoh, H., & Wada, Y. (2001). Serial MRI and superscript 1H-MRS of Wernicke's encephalopathy: Report of a case with remarkable cerebellar lesions on MRI: Psychiatry Research: Neuroimaging Vol 108(1) Nov 2001, 49-55.
  • Naatanen, R., & Alho, K. (1995). Generators of electrical and magnetic mismatch responses in humans: Brain Topography Vol 7(4) Sum 1995, 315-320.
  • Naatanen, R., Ilmoniemi, R. J., & Alho, K. (1994). Magnetoencephalography in studies of human cognitive brain function: Trends in Neurosciences Vol 17(9) Sep 1994, 389-395.
  • Naatanen, R., Ilmoniemi, R. J., & Alho, K. (1997). Magnetoencephalography in studies of attention. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Nagamine, T., Kajola, M., Salmelin, R., Shibasaki, H., & et al. (1996). Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms: Electroencephalography & Clinical Neurophysiology Vol 99(3) Sep 1996, 274-286.
  • Nagamine, T., Makela, J., Mima, T., Mikuni, N., Nishitani, N., Satoh, T., et al. (1998). Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields: Brain Research Vol 791(1-2) Apr 1998, 200-208.
  • Naito, T., Kaneoke, Y., Osaka, N., & Kakigi, R. (2000). Asymmetry of the human visual field in magnetic response to apparent motion: Brain Research Vol 865(2) May 2000, 221-226.
  • Nakamura, M., Kakigi, R., Okusa, T., Hoshiyama, M., & Watanabe, K. (2000). Effects of check size on pattern reversal visual evoked magnetic field and potential: Brain Research Vol 872(1-2) Jul 2000, 77-86.
  • Nakata, H., Inui, K., Wasaka, T., Akatsuka, K., & Kakigi, R. (2005). Somato-motor inhibitory processing in humans: A study with MEG and ERP: European Journal of Neuroscience Vol 22(7) Oct 2005, 1784-1792.
  • Narici, L., & Romani, G. L. (1989). Neuromagnetic investigation of synchronized spontaneous activity: Brain Topography Vol 2(1-2), Spec Issue Fal-Win 1989, 19-30.
  • Nemec, P., Altmann, J., Marhold, S., Burda, H., & Oelschlager, H. H. A. (2001). Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal: Science Vol 294(5541) Oct 2001, 366-368.
  • Nikulin, V. V., Linkenkaer-Hansen, K., Nolte, G., Lemm, S., Muller, K. R., Ilmoniemi, R. J., et al. (2007). A novel mechanism for evoked responses in the human brain: European Journal of Neuroscience Vol 25(10) May 2007, 3146-3154.
  • Nikulin, V. V., Nikulina, A. V., Yamashita, H., Rossi, E. M., & Kahkonen, S. (2005). Effects of alcohol on spontaneous neuronal oscillations: A combined magnetoencephalography and electroencephalography study: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 29(5) Jun 2005, 687-693.
  • Ninomiya, Y., Kitamura, Y., Yamamoto, S., Okamoto, M., Oka, H., Yamada, N., et al. (2001). Analysis of pain-related somatosensory evoked magnetic fields using the MUSIC (multiple signal classification) algorithm for magnetoencephalography: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(8) Jun 2001, 1657-1661.
  • O'Connor, M. E., & Lovely, R. H. (1988). Electromagnetic fields and neurobehavioral function. New York, NY: Alan R Liss.
  • Oishi, M., Fukuda, M., Kameyama, S., Kawaguchi, T., Masuda, H., & Tanaka, R. (2003). Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour: Journal of Neurology, Neurosurgery & Psychiatry Vol 74(12) Dec 2003, 1649-1654.
  • Oishi, M., Otsubo, H., Kameyama, S., Wachi, M., Tanaka, K., Masuda, H., et al. (2003). Ictal magnetoencephalographic discharges from elementary visual hallucinations of status epilepticus: Journal of Neurology, Neurosurgery & Psychiatry Vol 74(4) Apr 2003, 525-527.
  • Okada, Y. (2003). Toward Understanding the Physiological Origins of Neuromagnetic Signals. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Okada, Y. C., & Salenius, S. (1998). Roles of attention, memeory and motor preparation in modulating human brain activity in a spatial working memory task: Cerebral Cortex Vol 8(1) Jan-Feb 1998, 80-96.
  • Osaka, M. (2002). Working memory and the peak alpha frequency shift on magnetoencephalography (MEG). Amsterdam, Netherlands: John Benjamins Publishing Company.
  • Osaka, M., Osaka, N., Koyama, S., Okusa, T., & Kakigi, R. (1999). Individual differences in working memory and the peak alpha frequency shift on magnetoencephalography: Cognitive Brain Research Vol 8(3) Oct 1999, 365-368.
  • Osaka, N. (1998). Evoked magnetic field elicited by motion aftereffect: Japanese Journal of Psychonomic Science Vol 17(1) Sep 1998, 62-67.
  • Ossadtchi, A., Baillet, S., Mosher, J. C., Thyerlei, D., Sutherling, W., & Leahy, R. M. (2004). Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering: Clinical Neurophysiology Vol 115(3) Mar 2004, 508-522.
  • Ossenkopp, K.-P., & et al. (1985). Exposure to nuclear magnetic resonance imaging procedure attenuates morphine-induced analgesia in mice: Life Sciences Vol 37(16) Oct 1985, 1507-1514.
  • Otsubo, H., & Snead, O. C., III. (2001). Magnetoencephalography and magnetic source imaging in children: Journal of Child Neurology Vol 16(4) Apr 2001, 227-235.
  • Paetau, R. (2002). Magnetoencephalography in pediatric neuroimaging: Developmental Science Vol 5(3) Aug 2002, 361-370.
  • Palac, S. M., Kanner, A. M., Andrews, R., & Patil, A. A. (2002). Should epilepsy surgery be used in the treatment of autistic regression? : Epilepsy & Behavior Vol 3(2) Apr 2002, 113-121.
  • Palomaki, K., Alku, P., Makinen, V., May, P., & Tiitinen, H. (2000). Sound localization in the human brain: Neuromagnetic observations: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(7) May 2000, 1535-1538.
  • Palva, S., Palva, J. M., Shtyrov, Y., Kujala, T., Ilmoniemi, R. J., Kaila, K., et al. (2002). Distinct gamma-band evoked responses to speech and non-speech sounds in humans: Journal of Neuroscience Vol 22(4) Feb 2002, No Pagination Specified.
  • Pantev, C. (1995). Evoked and induced gamma-band activity of the human cortex: Brain Topography Vol 7(4) Sum 1995, 321-330.
  • Papanicolaou, A. C. (1995). An introduction to magnetoencephalography with some applications: Brain and Cognition Vol 27(3) Apr 1995, 331-352.
  • Papanicolaou, A. C., Pugh, K. R., Simos, P. G., & Mencl, W. E. (2004). Functional Brain Imaging: An Introduction to Concepts and Applications. Baltimore, MD: Paul H Brookes Publishing.
  • Papanicolaou, A. C., Rogers, R. L., & Baumann, S. B. (1991). Applications of magnetoencephalography to the study of cognition: Annals of the New York Academy of Sciences Vol 620 Apr 1991, 118-127.
  • Papanicolaou, A. C., Simos, P. G., Breier, J. I., Wheless, J. W., Mancias, P., Baumgartner, J. E., et al. (2001). Brain plasticity for sensory and linguistic functions: A functional imaging study using magnetoencephalography with children and young adults: Journal of Child Neurology Vol 16(4) Apr 2001, 241-252.
  • Papanicolaou, A. C., Simos, P. G., Castillo, E. M., Bowyer, S. M., Moran, J. E., Mason, K. M., et al. (2005). "MEG localization of language-specific cortex utilizing MR-FOCUSS": Comment: Neurology Vol 64(4) Feb 2005, 765.
  • Parra, J., Kalitzin, S. N., & da Silva, F. H. L. (2004). Magnetoencephalography: An investigational tool or a routine clinical technique? : Epilepsy & Behavior Vol 5(3) Jun 2004, 277-285.
  • Parra, J., Kalitzin, S. N., Iriarte, J., Blanes, W., Velis, D. N., & da Silva, F. H. L. (2003). Gamma-band phase clustering and photosensitivity: Is there an underlying mechanism common to photosensitive epilepsy and visual perception? : Brain: A Journal of Neurology Vol 126(5) May 2003, 1164-1172.
  • Pauri, F. (2003). MEG/EEG-EMG coherence in different isometric contraction states and following fatigue: Functional Neurology Vol 18(2) Apr-Jun 2003, 105.
  • Pavlova, M., Birbaumer, N., & Sokolov, A. (2006). Attentional Modulation of Cortical Neuromagnetic Gamma Response to Biological Movement: Cerebral Cortex Vol 16(3) Mar 2006, 321-327.
  • Pecuch, P. W., Evers, S., Folkerts, H. W., Michael, N., & Arolt, V. (2000). The cerebral hemodynamics of repetitive transcranial magnetic stimulation: European Archives of Psychiatry and Clinical Neuroscience Vol 250(6) 2000, 320-324.
  • Pekkonen, E., Jaaskelainen, I. P., Hietanen, M., Huotilainen, M., Naatanen, R., Ilmoniemi, R. J., et al. (1999). Impaired preconscious auditory processing and cognitive functions in Alzheimer's disease: Clinical Neurophysiology Vol 110(11) Nov 1999, 1942-1947.
  • Plomp, G., Liu, L., van Leeuwen, C., & Ioannides, A. A. (2006). The "Mosaic Stage" in Amodal Completion as Characterized by Magnetoencephalography Responses: Journal of Cognitive Neuroscience Vol 18(8) Aug 2006, 1394-1405.
  • Poeppel, D., & Marantz, A. (2000). Cognitive neuroscience of speech processing. Cambridge, MA: The MIT Press.
  • Porcaro, C., Zappasodi, F., Barbati, G., Salustri, C., Pizzella, V., Rossini, P. M., et al. (2006). Fetal auditory responses to external sounds and mother's heart beat: Detection improved by Independent Component Analysis: Brain Research Vol 1101(1) Jul 2006, 51-58.
  • Post, R. M., Kimbrell, T. A., McCann, U. D., Dunn, R. T., Osuch, E. A., Speer, A. M., et al. (1999). Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: Present status and future potential: Journal of ECT Vol 15(1) Mar 1999, 39-59.
  • Puligheddu, M., de Munck, J. C., Stam, C. J., Verbunt, J., de Jongh, A., van Dijk, B. W., et al. (2005). Age Distribution of MEG Spontaneous Theta Activity in Healthy Subjects: Brain Topography Vol 17(3) Spr 2005, 165-175.
  • Pulvermuller, F., & Assadollahi, R. (2007). Grammar or serial order?: Discrete combinatorial brain mechanisms reflected by the syntactic mismatch negativity: Journal of Cognitive Neuroscience Vol 19(6) Jun 2007, 971-980.
  • Pulvermuller, F., Eulitz, C., Pantev, C., Mohr, B., & et al. (1996). High-frequency cortical responses reflect lexical processing: An MEG study: Electroencephalography & Clinical Neurophysiology Vol 98(1) Jan 1996, 76-85.
  • Pylkkanen, L., Feintuch, S., Hopkins, E., & Marantz, A. (2004). Neural correlates of the effects of morphological family frequency and family size: An MEG study: Cognition Vol 91(3) Apr 2004, B35-B45.
  • Pylkkanen, L., & Marantz, A. (2003). Tracking the time course of word recognition with MEG: Trends in Cognitive Sciences Vol 7(5) May 2003, 187-189.
  • Pylkkanen, L., & McElree, B. (2007). An MEG Study of silent meaning: Journal of Cognitive Neuroscience Vol 19(11) Nov 2007, 1905-1921.
  • Pylkkanen, L., Stringfellow, A., & Marantz, A. (2002). Neuromagnetic evidence for the timing of lexical activation: An MEG component sensitive to phonotactic probability but not to neighborhood density: Brain and Language Vol 81(1-3) Apr-Jun 2002, 666-678.
  • Raij, T., & Jousmaki, V. (2004). MEG Studies of Cross-Modal Integration and Plasticity. Cambridge, MA: MIT Press.
  • Reeve, A., Rose, D. F., & Weinberger, D. R. (1989). Magnetoencephalography: Applications in psychiatry: Archives of General Psychiatry Vol 46(6) Jun 1989, 573-576.
  • Regan, D., & He, P. (1995). Magnetic and electrical responses of the human brain to texture-defined form and to textons: Journal of Neurophysiology Vol 74(3) Sep 1995, 1167-1178.
  • Reite, M., Scheuneman, D., Gilger, J. W., Teale, P., & et al. (1992). Auditory magnetic source localization in twins: Brain Research Bulletin Vol 28(4) Apr 1992, 641-644.
  • Reite, M., Sheeder, J., Richardson, D., Teale, P., & et al. (1995). Cerebral laterality in homosexual males: Preliminary communication using magnetoencephalography: Archives of Sexual Behavior Vol 24(6) Dec 1995, 585-593.
  • Reite, M., Sheeder, J., Teale, P., Adams, M., & et al. (1997). Magnetic source imaging evidence of sex differences in cerebral lateralization in schizophrenia: Archives of General Psychiatry Vol 54(5) May 1997, 433-440.
  • Reite, M., Sheeder, J., Teale, P., Richardson, M., Adams, M., & Simon, J. (1995). MEG based brain laterality: Sex differences in normal adults: Neuropsychologia Vol 33(12) Dec 1995, 1607-1616.
  • Reite, M., Teale, P., & Rojas, D. C. (1999). Magnetoencephalography: Applications in psychiatry: Biological Psychiatry Vol 45(12) Jun 1999, 1553-1563.
  • Reite, M., Teale, P., Zimmerman, J., Davis, K., & et al. (1988). Source origin of a 50-msec latency auditory evoked field component in young schizophrenic men: Biological Psychiatry Vol 24(5) Sep 1988, 495-506.
  • Reulbach, U., Bleich, S., Maihofner, C., Kornhuber, J., & Sperling, W. (2007). Specific and unspecific auditory hallucinations in patients with schizophrenia: A magnetoencephalographic study: Neuropsychobiology Vol 55(2) Jul 2007, 89-95.
  • Rif, J., Hari, R., Hamalainen, M. S., & Sams, M. (1991). Auditory attention affects two different areas in the human supratemporal cortex: Electroencephalography & Clinical Neurophysiology Vol 79(6) Dec 1991, 464-472.
  • Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the 'new psychophysiology': International Journal of Psychophysiology Vol 63(2) Feb 2007, 164-172.
  • Roberts, T. P. L., Poeppel, D., & Rowley, H. A. (1998). Magnetoencephalography and magnetic source imaging: Neuropsychiatry, Neuropsychology, & Behavioral Neurology Vol 11(2) Apr 1998, 49-64.
  • Rodin, E., Funke, M., Berg, P., & Matsuo, F. (2004). Magnetoencephalographic spikes not detected by conventional electroencephalography: Clinical Neurophysiology Vol 115(9) Sep 2004, 2041-2047.
  • Rogers, R. L. (1994). Magnetoencephalographic imaging of cognitive processes. San Diego, CA: Academic Press.
  • Rogers, R. L., Basile, L. F., Papanicolaou, A. C., Bourbon, T. W., & et al. (1993). Visual evoked magnetic fields reveal activity in the superior temporal sulcus: Electroencephalography & Clinical Neurophysiology Vol 86(5) May 1993, 344-347.
  • Rogers, R. L., Basile, L. F., Papanicolaou, A. C., & Eisenberg, H. M. (1993). Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task: Cerebral Cortex Vol 3(2) Mar-Apr 1993, 163-169.
  • Rogers, R. L., Basile, L. F. H., Bourbon, W. T., Taylor, S., al, e., & et al. (1996). Laterality of hippocampal responses to infrequent and unpredictable omissions of visual stimuli: Brain Topography Vol 9(1) Fal 1996, 15-20.
  • Rogers, R. L., Papanicolaou, A. C., Baumann, S. B., & Eisenberg, H. M. (1992). Late magnetic fields and positive evoked potentials following infrequent and unpredictable omissions of visual stimuli: Electroencephalography & Clinical Neurophysiology Vol 83(2) Aug 1992, 146-152.
  • Rogers, R. L., Papanicolaou, A. C., Baumann, S. B., Saydjari, C., & et al. (1990). Neuromagnetic evidence of a dynamic excitation pattern generating the N100 auditory response: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 77(3) May-Jun 1990, 237-240.
  • Ropohl, A., Sperling, W., Elstner, S., Tomandl, B., Reulbach, U., Kaltenhauser, M., et al. (2004). Cortical activity associated with auditory hallucinations: Neuroreport: For Rapid Communication of Neuroscience Research Vol 15(3) Mar 2004, 523-526.
  • Rosburg, T. (2003). Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity and duration deviants: Cognitive Brain Research Vol 16(1) Mar 2003, 83-90.
  • Rossini, P. M., Narici, L., Martino, G., Pasquarelli, A., & et al. (1994). Analysis of interhemispheric asymmetries of somatosensory evoked magnetic fields to right and left median nerve stimulation: Electroencephalography & Clinical Neurophysiology Vol 91(6) Dec 1994, 476-482.
  • Rossini, P. M., & Pauri, F. (2000). Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas "plastic" reorganisation: Brain Research Reviews Vol 33(2-3) Sep 2000, 131-154.
  • Rossini, P. M., & Pauri, F. (2001). Integrated technologies (fMRI, MEG, EEG, TMS) in testing sensorimotor integration in the healthy and neurological patients. Amsterdam, Netherlands: IOS Press.
  • Rubia, K. (2003). Review of Functional neuroimaging in child psychiatry: Cognitive Neuropsychiatry Vol 8(2) May 2003, 155-156.
  • Ruff, R. M., Cullum, C. M., & Luerssen, T. G. (1989). Brain imaging and neuropsychological outcome in traumatic brain injury. New York, NY: Plenum Press.
  • Rupp, A., Gutschalk, A., Hack, S., & Scherg, M. (2002). Temporal resolution of the human primary auditory cortex in gap detection: Neuroreport: For Rapid Communication of Neuroscience Research Vol 13(17) Dec 2002, 2203-2207.
  • Sachdev, P. S. (1990). Magnetic resonance imaging in clinical psychiatry: Acta Psychiatrica Scandinavica Vol 81(4) Apr 1990, 378-385.
  • Salenius, S., Kajola, M., Thompson, W. L., Kosslyn, S., & et al. (1995). Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery: Electroencephalography & Clinical Neurophysiology Vol 95(6) Dec 1995, 453-462.
  • Salmelin, R. (2007). Clinical neurophysiology of language: The MEG approach: Clinical Neurophysiology Vol 118(2) Feb 2007, 237-254.
  • Salmelin, R., Service, E., Kiesila, P., Uutela, K., & et al. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography: Annals of Neurology Vol 40(2) Aug 1996, 157-162.
  • Sambeth, A., Huotilainen, M., Kushnerenko, E., Fellman, V., & Pihko, E. (2006). Newborns discriminate novel from harmonic sounds: A study using magnetoencephalography: Clinical Neurophysiology Vol 117(3) Mar 2006, 496-503.
  • Samms, M., Hari, R., Rif, J., & Knuutila, J. (1993). The human auditory sensory memory trace persists about 10 sec: Neuromagnetic evidence: Journal of Cognitive Neuroscience Vol 5(3) Sum 1993, 363-370.
  • Sams, M., & et al. (1985). Cerebral neuromagnetic responses evoked by short auditory stimuli: Electroencephalography & Clinical Neurophysiology Vol 61(4) Oct 1985, 254-266.
  • Sams, M., & Hari, R. (1991). Magnetoencephalography in the study of human auditory information processing: Annals of the New York Academy of Sciences Vol 620 Apr 1991, 102-117.
  • Sams, M., Kaukoranta, E., Hamalainen, M., & Naatanen, R. (1991). Cortical activity elicited by changes in auditory stimuli: Different sources for the magnetic N100m and mismatch responses: Psychophysiology Vol 28(1) Jan 1991, 21-29.
  • Sanders, J. A., Lewine, J. D., & Orrison, W. W., Jr. (1996). Comparison of primary motor cortex localization using functional magnetic resonance imaging and magnetoencephalography: Human Brain Mapping Vol 4(1) 1996, 47-57.
  • Sandyk, R. (1998). Yawning and stretching-a behavioral syndrome associated with transcranial application of electromagnetic fields in multiple sclerosis: International Journal of Neuroscience Vol 95(1-2) 1998, 107-113.
  • Sasaki, K., Gemba, H., Nambu, A., & Matsuzaki, R. (1993). No-go activity in the frontal association cortex of human subjects: Neuroscience Research Vol 18(3) Dec 1993, 249-252.
  • Sasaki, K., Nambu, A., Tsujimoto, T., Matsuzaki, R., & et al. (1996). Studies on integrative functions of the human frontal association cortex with MEG: Cognitive Brain Research Vol 5(1-2) Dec 1996, 165-174.
  • Schack, B., Grieszbach, G., Nowak, H., & Krause, W. (1999). The sensitivity of instantaneous coherence for considering elementary comparison processing. Part II: Similarities and differences between EEG and MEG coherences: International Journal of Psychophysiology Vol 31(3) Mar 1999, 241-259.
  • Schaefer, M., Heinze, H.-J., & Rotte, M. (2005). Seeing the hand being touched modulates the primary somatosensory cortex: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(10) Jul 2005, 1101-1105.
  • Schaefer, M., Noennig, N., Karl, A., Heinze, H.-J., & Rotte, M. (2004). Reproducibillty and Stability of Neuromagnetic Source Imaging in Primary Somatosensory Cortex: Brain Topography Vol 17(1) Fal 2004, 47-53.
  • Schleussner, E., Schneider, U., Arnscheidt, C., Kahler, C., Haueisen, J., & Seewald, H.-J. (2004). Prenatal evidence of left-right asymmetries in auditory evoked responses using fetal magnetoencephalography: Early Human Development Vol 78(2) Jul 2004, 133-136.
  • Schoonhoven, R., Boden, C. J. R., Verbunt, J. P. A., & de Munck, J. C. (2003). A whole head MEG study of the amplitude-modulation-following response: Phase coherence, group delay and dipole source analysis: Clinical Neurophysiology Vol 114(11) Nov 2003, 2096-2106.
  • Schwab, K., Ligges, C., Jungmann, T., Hilgenfeld, B., Haueisen, J., & Witte, H. (2006). Alpha entrainment in human electroencephalogram and magnetoencephalogram recordings: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 17(17) Nov 2006, 1829-1833.
  • Schwartz, D. P., Badier, J. M., Vignal, J. P., Toulouse, P., Scarabin, J. M., & Chauvel, P. (2003). Non-supervised spatio-temporal analysis of interictal magnetic spikes: Comparison with intracerebral recordings: Clinical Neurophysiology Vol 114(3) Mar 2003, 438-449.
  • Sekiguchi, T., & Nishitani, N. (2006). The effect of the number of possible words on word completion: A magnetoencephalographic study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 17(15) Oct 2006, 1637-1641.
  • Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., & Miyashita, Y. (2002). Application of an MEG eigenspace beamformer to reconstructing spatio-temporal activities of neural sources: Human Brain Mapping Vol 15(4) Apr 2002, 199-215.
  • Sekimoto, M., Kato, M., Kaneko, Y., & Onuma, T. (2007). Ictal nausea with vomiting as the major symptom of simple partial seizures: Electroencephalographic and magnetoencephalographic analysis: Epilepsy & Behavior Vol 11(4) Dec 2007, 582-587.
  • Seri, S., Pisani, F., Thai, J. N., & Cerquiglini, A. (2007). Pre-attentive auditory sensory processing in autistic spectrum disorder. Are electromagnetic measurements telling us a coherent story? : International Journal of Psychophysiology Vol 63(2) Feb 2007, 159-163.
  • Service, E., Helenius, P., Maury, S., & Salmelin, R. (2007). Localization of syntactic and semantic brain responses using magnetoencephalography: Journal of Cognitive Neuroscience Vol 19(7) Jul 2007, 1193-1205.
  • Service, E., Helenius, P., & Salmelin, R. (2003). Comparing normal and impaired reading using magnetoencephalography. New York, NY: Kluwer Academic/Plenum Publishers.
  • Seyal, M., Mull, B., Bhullar, N., Ahmad, T., & Gage, B. (1999). Anticipation and execution of a simple reading task enhance corticospinal excitability: Clinical Neurophysiology Vol 110(3) Mar 1999, 424-429.
  • Shestakova, A., Brattico, E., Huotilainen, M., Galunov, V., Soloviev, A., Sams, M., et al. (2002). Abstract phoneme representations in the left temporal cortex: Magnetic mismatch negativity study: Neuroreport: For Rapid Communication of Neuroscience Research Vol 13(14) Oct 2002, 1813-1816.
  • Shibasaki, H., Ikeda, A., & Nagamine, T. (2007). Use of magnetoencephalography in the presurgical evaluation of epilepsy patients: Clinical Neurophysiology Vol 118(7) Jul 2007, 1438-1448.
  • Shih, J. J., & Cohen, L. G. (2004). Cortical reorganization in the human brain: How the old dog learns depends on the trick: Neurology Vol 63(10) Nov 2004, 1772-1773.
  • Shiraishi, H., Watanabe, Y., Watanabe, M., Inoue, Y., Fujiwara, T., & Yagi, K. (2001). Interictal and ictal magnetoencephalographic study in patients with medial frontal lobe epilepsy: Epilepsia Vol 42(7) Jul 2001, 875-885.
  • Shtyrov, Y., & Pulvermuller, F. (2007). Earrly MEG activation dynamics in the left temporal and inferior frontal cortex reflect semantic context integration: Journal of Cognitive Neuroscience Vol 19(10) Oct 2007, 1633-1642.
  • Simos, P. G. (2004). Recording Magnetic Signals From the Human Brain: Mapping Brain Function in Real Time: PsycCRITIQUES Vol 49 (Suppl 14), 2004.
  • Simos, P. G., Basile, L. F. H., & Papanicolaou, A. C. (1997). Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic resonance imaging: Brain Research Vol 762(1-2) Jul 1997, 29-39.
  • Simos, P. G., Breier, J. I., Maggio, W. W., Gormley, W. B., Zouridakis, G., Willmore, L. J., et al. (1999). Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation: Neuroreport: For Rapid Communication of Neuroscience Research Vol 10(1) Jan 1999, 139-142.
  • Simos, P. G., Breier, J. I., Zouridakis, G., & Papanicolaou, A. C. (1998). Identification of language-specific brain activity using magnetoencephalography: Journal of Clinical and Experimental Neuropsychology Vol 20(5) Oct 1998, 706-722.
  • Simos, P. G., Diehl, R. L., Breier, J. I., Molis, M. R., Zouridakis, G., & Papanicolaou, A. C. (1998). MEG correlates of categorical perception of a voice onset time continuum in humans: Cognitive Brain Research Vol 7(2) Oct 1998, 215-219.
  • Simos, P. G., Fletcher, J. M., Denton, C., Sarkari, S., Billingsley-Marshall, R., & Papanicolaou, A. C. (2006). Magnetic Source Imaging Studies of Dyslexia Interventions: Developmental Neuropsychology Vol 30(1) 2006, 591-611.
  • Simos, P. G., Fletcher, J. M., Sarkari, S., Billingsley, R. L., Denton, C., & Papanicolaou, A. C. (2007). Altering the brain circuits for reading through intervention: A magnetic source imaging study: Neuropsychology Vol 21(4) Jul 2007, 485-496.
  • Simos, P. G., Fletcher, J. M., Sarkari, S., Billingsley, R. L., Francis, D. J., Castillo, E. M., et al. (2005). Early Development of Neurophysiological Processes Involved in Normal Reading and Reading Disability: A Magnetic Source Imaging Study: Neuropsychology Vol 19(6) Nov 2005, 787-798.
  • Simos, P. G., & Papanicolaou, A. C. (2000). Imaging cerebral activation associated with language functions using magnetoencephalography: Psychology: The Journal of the Hellenic Psychological Society Vol 7(2) Aug 2000, 240-257.
  • Singh, K. D. (2006). Magnetoencephalography. Cambridge, MA: MIT Press.
  • Sinton, C. M., McCullough, J. R., Ilmoniemi, R. J., & Etienne, P. E. (1986). Modulation of auditory evoked magnetic fields by benzodiazepines: Neuropsychobiology Vol 16(4) 1986, 215-218.
  • Sokolov, A., Lutzenberger, W., Pavlova, M., Preissl, H., Braun, C., & Birbaumer, N. (1999). Gamma-band MEG activity to coherent motion depends on task-driven attention: Neuroreport: For Rapid Communication of Neuroscience Research Vol 10(10) Jul 1999, 1997-2000.
  • Soufflet, L., & Boeijinga, P. H. (2005). Linear Inverse Solutions: Simulations from a Realistic Head Model in MEG: Brain Topography Vol 18(2) Win 2005, 87-99.
  • Sperling, W., Kornhuber, J., & Bleich, S. (2003). Dipole elevations over the temporoparietal brain area are associated with negative symptoms in schizophrenia: Schizophrenia Research Vol 64(2-3) Nov 2003, 187-188.
  • Sperling, W., Martus, P., & Alschbach, M. (2000). Evaluation of neuronal effects of electroconvulsive therapy by magnetoencephalography (MEG): Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 24(8) Nov 2000, 1339-1354.
  • Sperling, W., Martus, P., Kober, H., Bleich, S., & Kornhuber, J. (2002). Spontaneous, slow and fast magnetoencephalographic activity in patients with schizophrenia: Schizophrenia Research Vol 58(2-3) Dec 2002, 189-199.
  • Sperling, W., Vieth, J., Martus, M., Demling, J., & Barocka, A. (1999). Spontaneous slow and fast MEG activity in male schizophrenics treated with clozapine: Psychopharmacology Vol 142(4) Mar 1999, 375-382.
  • Starr, A., Kristeva, R., Cheyne, D., Lindinger, G., & et al. (1991). Localization of brain activity during auditory verbal short-term memory derived from magnetic recordings: Brain Research Vol 558(2) Sep 1991, 181-190.
  • Stippich, C., Freitag, P., Kassubek, J., Soros, P., Kamada, K., Kober, H., et al. (1998). Motor, somatosensory and auditory cortex localization by fMRI and MEG: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 9(9) Jun 1998, 1953-1957.
  • Stockall, L. C. (2005). Magnetoencephalographic investigations of morphological identity and irregularity. Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Streit, M., Ioannides, A. A., Liu, L., Wolwer, W., Dammers, J., Gross, J., et al. (1999). Neurophysiological correlates of the recognition of facial expressions of emotion as revealed by magnetoencephalography: Cognitive Brain Research Vol 7(4) Mar 1999, 481-491.
  • Struber, D., & Herrmann, C. S. (2002). MEG alpha decrease reflects destabilization of multistable percepts: Cognitive Brain Research Vol 14(3) Nov 2002, 370-382.
  • Susac, A., Ilmoniemi, R. J., Pihko, E., & Supek, S. (2004). Neurodynamic Studies on Emotional and Inverted Faces in an Oddball Paradigm: Brain Topography Vol 16(4) Sum 2004, 265-268.
  • Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Naatanen, R. (2002). Top-down effects can modify the initially stimulus-driven auditory organization: Cognitive Brain Research Vol 13(3) May 2002, 393-405.
  • Szymanksi, M. D., Rowley, H. A., & Roberts, T. P. L. (1999). A hemispherically asymmetrical MEG response to vowels: Neuroreport: For Rapid Communication of Neuroscience Research Vol 10(12) Aug 1999, 2481-2486.
  • Tanaka, E., Noguchi, Y., Kakigi, R., & Kaneoke, Y. (2007). Human cortical response to various apparent motions: A magnetoencephalographic study: Neuroscience Research Vol 59(2) Oct 2007, 172-182.
  • Tanaka, N., Demise, M., Takeda, Y., Shiga, T., & Kamada, K. (2003). Combined Imaging of Epileptic Foci Using Magnetoencephalography and Flumazenil PET in a Patient with Epilepsia Partialis Continua: Seishin Igaku (Clinical Psychiatry) Vol 45(11) Nov 2003, 1219-1221.
  • Tang, A., Pearlmutter, B. A., Malaszenko, N. A., Phung, D. B., & Reeb, B. C. (2002). Independent components of magnetoencephalography: Localization: Neural Computation Vol 14(8) Aug 2002, 1827-1858.
  • Tang, A. C., & Pearlmutter, B. A. (2003). Independent Components of Magnetoencephalography: Localization and Single-Trial Response Onset Detection. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Tang, A. C., Pearlmutter, B. A., Zibulevsky, M., & Carter, S. A. (2000). Blind source separation of multichannel neuromagnetic responses: Neurocomputing: An International Journal Vol 32-33 Jun 2000, 1115-1120.
  • Tarokh, L. (2006). MEG and EEG correlates of perceptual dominance induced by a salient stimulus. Dissertation Abstracts International: Section B: The Sciences and Engineering.
  • Teale, P., Carlson, J., Rojas, D., & Reite, M. (2003). Reduced Laterality of the Source Locations for Generators of the Auditory Steady-State Field in Schizophrenia: Biological Psychiatry Vol 54(11) Dec 2003, 1149-1153.
  • Teale, P., Delmore, J., Simon, J., & Reite, M. (1994). Magnetic auditory source imaging in macaque monkey: Brain Research Bulletin Vol 33(5) 1994, 615-620.
  • Teale, P., Reite, M., Rojas, D. C., Sheeder, J., & Arciniegas, D. (2000). Fine structure of the auditory M100 in schizophrenia and schizoaffective disorder: Biological Psychiatry Vol 48(11) Dec 2000, 1109-1112.
  • Tecce, J. J. (2007). Review of Psychophysiology: Human behavior & physiological response: International Journal of Psychophysiology Vol 65(2) Aug 2007, 174-175.
  • Tesche, C. D. (1997). Non-invasive detection of ongoing neuronal population activity in normal human hippocampus: Brain Research Vol 749(1) Feb 1997, 53-60.
  • Tesche, C. D., Karhu, J., & Tissari, S. O. (1996). Non-invasive detection of neuronal population activity in human hippocampus: Cognitive Brain Research Vol 4(1) Jul 1996, 39-47.
  • Thatcher, R. W. (1996). Multimodal assessments of developing neural networks: Integrating fMRI, PET, MRI, and EEG/MEG. San Diego, CA: Academic Press.
  • Thonnessen, H., Zvyagintsev, M., Harke, K. C., Boers, F., Dammers, J., Norra, C., et al. (2008). Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients: A combined EEG and MEG study: Biological Psychology Vol 77(2) Feb 2008, 205-216.
  • Tiitinen, H., Alho, K., Huotilainen, M., Ilmoniemi, R. J., & et al. (1993). Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity: Psychophysiology Vol 30(5) Sep 1993, 537-540.
  • Tiitinen, H., Makinen, V. T., Kicic, D., & May, P. J. C. (2005). Averaged and single-trial brain responses in the assessment of human sound detection: Neuroreport: For Rapid Communication of Neuroscience Research Vol 16(6) Apr 2005, 545-548.
  • Triggs, W. J., Subramanium, B., & Rossi, F. (1999). Hand preference and transcranial magnetic stimulation asymmetry of cortical motor representation: Brain Research Vol 835(2) Jul 1999, 324-329.
  • Ugawa, Y., Terao, Y., Hanajima, R., Sakai, K., Furubayashi, T., Machii, K., et al. (1997). Magnetic stimulation over the cerebellum in patients with ataxia: Electroencephalography & Clinical Neurophysiology: Evoked Potentials Vol 104(5) Sep 1997, 453-458.
  • Uhlhaas, P. J., & Singer, W. (2007). What do disturbances in neural synchrony tell us about autism? : Biological Psychiatry Vol 62(3) Aug 2007, 190-191.
  • Uohashi, T., Kitamura, Y., Ishizu, S., Okamoto, M., Yamada, N., & Kuroda, S. (2006). Analysis of magnetic source localization of P300 using the multiple signal classification algorithm: Psychiatry and Clinical Neurosciences Vol 60(6) Dec 2006, 645-651.
  • Uther, M., Jansen, D. H. J., Huotilainen, M., Ilmoniemi, R. J., & Naatanen, R. (2003). Mismatch negativity indexes auditory temporal resolution: Evidence from event-related potential (ERP) and event-related field (ERF) recordings: Cognitive Brain Research Vol 17(3) Oct 2003, 685-691.
  • Valaki, C., Maestu, F., Simos, P. G., Ishibashi, H., Fernandez, A., Amo, C., et al. (2003). Do different writing systems involve distinct profiles of brain activation? A magnetoencephalography study: Journal of Neurolinguistics Vol 16(4-5) Jul-Sep 2003, 429-438.
  • Valaki, C.-E., Maestu, F., Simos, P. G., Ortiz, T., & Papanicolaou, A. C. (2004). Contributions of magnetoencephalography to neurolinguistics: Evidence from cross-linguistic studies: Hellenic Journal of Psychology Vol 1(3) Dec 2004, 268-281.
  • van Walsum, A. M. v. C., Pijnenburg, Y. A. L., Berendse, H. W., van Dijk, B. W., Knol, D. L., Scheltens, P., et al. (2003). A neural complexity measure applied to MEG data in Alzheimer's disease: Clinical Neurophysiology Vol 114(6) Jun 2003, 1034-1040.
  • Vidal, J. R., Chaumon, M., O'Regan, J. K., & Tallon-Baudry, C. (2006). Visual Grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human Magnetoencephalogram Signals: Journal of Cognitive Neuroscience Vol 18(11) Nov 2006, 1850-1862.
  • Vieth, J. B., Kober, H., Ganslandt, O., Moller, M., & Kamada, K. (2003). Clinical Applications of Brain Magnetic Source Imaging. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Vrba, J., Robinson, S. E., & Fife, A. A. (2003). Toward Noise-Immune Magnetoencephalography Instrumentation. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Waldorp, L. J., Huizenga, H. M., Grasman, R. P. P. P., Bocker, K. B. E., & Molenaar, P. C. M. (2006). Hypothesis Testing in Distributed Source Models for EEC and MEG Data: Human Brain Mapping Vol 27(2) Feb 2006, 114-128.
  • Walla, P., Greiner, K., Duregger, C., Deecke, L., & Thurner, S. (2007). Self-awareness and the subconscious effect of personal pronouns on word encoding: A magnetoencephalography (MEG) study: Neuropsychologia Vol 45(4) 2007, 796-809.
  • Wang, Y., Berg, P., & Scherg, M. (1999). Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: A simulation study: Clinical Neurophysiology Vol 110(4) Apr 1999, 604-614.
  • Watanabe, S., Kakigi, R., Koyama, S., Hoshiyama, M., & Kaneoke, Y. (1998). Pain processing traced by magnetoencephalography in the human brain: Brain Topography Vol 10(4) Sum 1998, 255-264.
  • Watanabe, S., Kakigi, R., Koyama, S., & Kirino, E. (1999). Human face perception traced by magneto- and electro-encephalography: Cognitive Brain Research Vol 8(2) Jul 1999, 125-142.
  • Watanabe, S., Kakigi, R., Miki, K., & Puce, A. (2006). Human MT/V5 activity on viewing eye gaze changes in others: A magnetoencephalographic study: Brain Research Vol 1092(1) May 2006, 152-160.
  • Wehner, D. T. (2007). Phonological and semantic influences on auditory word perception in children with and without reading impairments using magnetoencephalography (MEG) and electroencephalography (EEG). Dissertation Abstracts International Section A: Humanities and Social Sciences.
  • Wehner, D. T., Ahlfors, S. P., & Mody, M. (2007). The influence of sematic processing on phonological decisions in children and adults: A magnetoencephalography (MEG) study: Journal of Speech, Language, and Hearing Research Vol 50(3) Jun 2007, 716-731.
  • Weinberg, H., & et al. (1984). The use of a SQUID third order spatial gradiometer to measure magnetic fields of the brain: Annals of the New York Academy of Sciences Vol 425 Jun 1984, 743-752.
  • Wienbruch, C., Eulitz, C., Lehnertz, K., Brockhaus, A., Elger, C. E., Elbert, T., et al. (1997). Methohexital-induced changes in spectral power of neuromagnetic signals: Beta augmentation is smaller over the hemisphere containing the epileptogenic focus: Brain Topography Vol 10(1) Fal 1997, 41-47.
  • Wieringa, H. J., Peters, M. J., & Lopes da Silva, F. H. (1993). The estimation of a realistic localization of dipole layers within the brain based on functional (EEG, MEG) and structural (MRI) data: A preliminary note: Brain Topography Vol 5(4) Sum 1993, 327-330.
  • Wik, G., Elbert, T., Fredrikson, M., & Hoke, M. (1996). Magnetic imaging in human classical conditioning: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 7(3) Feb 1996, 737-740.
  • Wik, G., Elbert, T., Fredrikson, M., Hoke, M., & et al. (1997). Magnetic brain imaging of extinction processes in human classical conditioning: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 8(7) May 1997, 1789-1792.
  • Williamson, S. J., & Kaufman, L. (1989). Advances in neuromagnetic instrumentation and studies of spontaneous brain activity: Brain Topography Vol 2(1-2), Spec Issue Fal-Win 1989, 129-139.
  • Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses: Biological Psychiatry Vol 62(3) Aug 2007, 192-197.
  • Woldorff, M. G., Tempelmann, C., Fell, J., Tegeler, C., Gaschler-Markefski, B., Hinrichs, H., et al. (1999). Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography: Human Brain Mapping Vol 7(1) 1999, 49-66.
  • Wolff, M., Weiskopf, N., Serra, E., Preissl, H., Birbaumer, N., & Kraegeloh-Mann, I. (2005). Benign Partial Epilepsy in Childhood: Selective Cognitive Deficits Are Related to the Location of Focal Spikes Determined by Combined EEG/MEG: Epilepsia Vol 46(10) Oct 2005, 1661-1667.
  • Wu, Y.-Z., Yang, T.-H., Lin, Y.-Y., Chen, S.-S., Liao, K.-K., Chen, L.-F., et al. (2006). Dimensional complexity of neuromagnetic activity reduced during finger movement of greater difficulty: Clinical Neurophysiology Vol 117(11) Nov 2006, 2473-2481.
  • Xiang, J., Chuang, S., Wilson, D., Otsubo, H., Pang, E., Holowka, S., et al. (2002). Sound motion evoked magnetic fields: Clinical Neurophysiology Vol 113(1) Jan 2002, 1-9.
  • Xiang, J., Daniel, S. J., Ishii, R., Holowka, S., Harrison, R. V., & Chuang, S. (2005). Auditory Detection of Motion Velocity in Humans: A Magnetoencephalographic Study: Brain Topography Vol 17(3) Spr 2005, 139-149.
  • Xiang, J., Hoshiyama, M., Koyama, S., Kaneoke, Y., Suzuki, H., Watanabe, S., et al. (1997). Somatosensory evoked magnetic fields following passive finger movement: Cognitive Brain Research Vol 6(2) Oct 1997, 73-82.
  • Xiang, J., Wilson, D., Otsubo, H., Ishii, R., & Chuang, S. (2001). Neuromagnetic spectral distribution of implicit processing of words: Neuroreport: For Rapid Communication of Neuroscience Research Vol 12(18) Dec 2001, 3923-3927.
  • Xu, H., Li, S.-J., Bodurka, J., Zhao, X., Xi, Z. X., & Stein, E. A. (2000). Heroin-induced neuronal activation in rat brain assessed by functional MRI: Neuroreport: For Rapid Communication of Neuroscience Research Vol 11(5) Apr 2000, 1085-1092.
  • Xu, Y., Liu, J., & Kanwisher, N. (2005). The M170 is selective for faces, not for expertise: Neuropsychologia Vol 43(4) 2005, 588-597.
  • Yagi, A. (2000). Editorial: Brain images and cognitive functions: Japanese Psychological Research Vol 42(1) Mar 2000, 1-2.
  • Yamamoto, C., Takehara, S., Morikawa, K., Nakagawa, S., Yamaguchi, M., Iwaki, S., et al. (2003). Magnetoencephalographic study of cortical activity evoked by electrogustatory stimuli: Chemical Senses Vol 28(3) Mar 2003, 245-251.
  • Yoneda, K., Sekimoto, S., Yumoto, M., & Sugishita, M. (1995). The early component of the visual evoked magnetic field: Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience Vol 6(5) Mar 1995, 797-800.
  • Yoshida, H., Iwahashi, M., Tonoike, M., Yamaguchi, M., & Hamada, T. (1999). Interhemispheric asymmetry of event-related fields concerned with logical processing during auditory oddball stimulation: Neuroreport: For Rapid Communication of Neuroscience Research Vol 10(5) Apr 1999, 953-957.
  • Zainea, O. F., Kostopoulos, G. K., & Ioannides, A. A. (2005). Clustering of Early Cortical Responses to Median Nerve Stimulation from Average and Single Trial MEG and EEG Signals: Brain Topography Vol 17(4) Sum 2005, 219-236.
  • Zanow, F., & Knosche, T. R. (2004). ASA -- Advanced Source Analysis of Continuous and Event-Related EEG/MEG Signals: Brain Topography Vol 16(4) Sum 2004, 287-290.
  • Zappasodi, F., Tecchio, F., Pizzella, V., Cassetta, E., Romano, G. V., Filligoi, G., et al. (2001). Detection of fetal auditory evoked responses by means of magnetoencephalography: Brain Research Vol 917(2) Nov 2001, 167-173.

External links

See also

This page uses Creative Commons Licensed content from Wikipedia (view authors).