Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)
A membrane transport protein is a protein involved in the movement of a chemical such as an ion or another protein across a biological membrane. Transport proteins are integral membrane proteins; that is they exist within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion or active transport.
Facilitated diffusion[]
A facilitated diffusion protein speeds the movement of a chemical through a membrane in the absence of energy input; therefore, the transported chemical can only move down a concentration gradient. This can be accomplished by the formation of a high-specificity pore or channel that spans the membrane.
Active transport[]
Transport proteins are also used in active transport, which by definition does require an energy input.
Chemiosmotic transport utilizes electrochemical gradients to drive transport. As the creation and maintenance of chemiosmotic gradients require energy input from the cell, this is a form of active transport. Prokaryotes typically use hydrogen ions as the driving force for chemiosmotic transport, while eukaryotes typically use sodium ions. A symporter/coporter transports a chemical in the same direction as the electrochemical gradient, while an antiporter moves the target chemical in a direction opposite to the gradient.
The uniporter is also often included as a category of chemiosmotic transporter, although a uniporter can also be consiered a facilitated diffusion protein on the basis of function.
Binding dependent active transport[]
Binding dependent active transport also moves the targeted chemical against a concentration gradient, but uses stored chemical energy, typically in the form of adenosine triphosphate, to power the transport. Generally speaking, a binding dependent transport system consists of a membrane spanning component with a high degree of specifity. The membrane spanning component changes configuration with the aid of chemical energy input (often through the use of an associated ATPase protein), thus translocating the chemical from one side of the membrane to the other.
By some definitions, proteins that catalyze the ligation of phosphate or coenzyme groups to a catabolized chemical can be considered active transport proteins in that they drive the uptake of a chemical by maintaining a steep functional concentration gradient. This pheonomenon is termed group translocation in the case of sugar phosphorylation and vectoral acylation or vectoral esterification in the case of fatty acid coenzyme A ligation.
Examples[]
- Karyopherin
- Mitochondrial membrane transport protein
- Glucose transporter
- ATP-binding cassette transporter genes
- P-glycoprotein
- CD98
- CD36
- Neurotransmitter transporters
- V-ATPase
- Ion transporters
- Na+/K+-ATPase
- Plasma membrane Ca2+ ATPase
- Proton pump
- Hydrogen potassium ATPase
- Sodium-chloride symporter
See also[]
- Carrier protein
- Ion channel
- P-loop
- TC number (classification)
- Vesicular transport protein
- Wikipedia:MeSH_D12.776#MeSH_D12.776.157.530_---_membrane_transport_proteins
External links[]
Proteins: carrier proteins | |
---|---|
Hormone |
Follistatin - Growth hormone binding protein - Insulin-like growth factor binding protein - Neurophysins (Neurophysin I, II) |
Metal/element |
calcium (Calcium-binding protein, Calmodulin-binding proteins) - copper (Ceruloplasmin) - iron (Iron-binding proteins, Transferrin receptor) |
Vitamin |
Retinol binding protein (4) - Transcobalamins |
Other |
Acyl carrier protein - Adaptor protein - Cholesterylester transfer protein - F-box protein - GTP-binding protein - Latent TGF-beta binding protein - Light-harvesting complex - Membrane transport protein |
Membrane proteins, carrier proteins: membrane transport proteins | |
---|---|
ABC-transporter |
A1, A12, B1, B2-3, B4, B5, B11, C4, C6, C8-9, D1, E1 |
Solute carrier |
1A1-7, 1A3, 2A1, 2A2, 2A3, 2A4, 3A1, 3A2, 4A1, 5A1-2, 5A5, 6A2, 6A3, 6A4, 7A5, 7A9, 8A1-3, 9A3, 11A2, 12A1-2, 12A3, 17A6-8, 18A1, 18A2, 18A3, 19A2, 19A3, 22A5, 24A1-2, 24A5, 25A4-6, 25A13, 25A15, 25A20, 26A2, 26A4, 34A1, 39A4, 40A1 |
Monosaccharide |
GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT8 |
Other |
Amino acid (CD98) - Fatty acid (CD36) - Ion channels - Ion pumps - Mitochondrial membrane transport protein - Neurotransmitter transport proteins - Nuclear (Karyopherin) |
Membrane transport protein: ion channels
| |
---|---|
Ca | Voltage-dependent calcium channel (L-type/CACNA1C, N-type, P-type, Q-type, R-type, T-type) - Inositol triphosphate receptor - Ryanodine receptor - Cation channels of sperm |
Na: Sodium channel | Nav1.4 - Nav1.5 - Nav1.7 - Epithelial sodium channel |
K: Potassium channel | Voltage-gated (KvLQT1, KvLQT2, KvLQT3, HERG, Shaker gene, KCNE1) - Calcium-activated (BK channel, SK channel) - Inward-rectifier (ROMK, KCNJ2) - Tandem pore domain |
Cl: Chloride channel | Cystic fibrosis transmembrane conductance regulator |
Porin | Aquaporin (1, 2, 3, 4) |
Transient receptor potential | TRPA - TRPC (TRPC6) - TRPM (TRPM6) - TRPML (Mucolipin-1) - TRPP - TRPV (TRPV1, TRPV6) |
Other/general | Gap junction - Stretch-activated ion channel - Ligand-gated ion channel - Voltage-gated ion channel - Cyclic nucleotide-gated ion channel - Two-pore channel |
Uniporter - Cotransporter
Symporter: Na+/K+/2Cl- - Na/Pi3 - Na+/Cl- - Na/glucose
Antiporter (exchanger): Na+/H+ - Na+/Ca2+ - Cl-/HCO3- (Band 3)
ATPase: F - V - H/K+ - Na+/K+ - Ca+ (SERCA, Plasma membrane)
Halorhodopsin - Proton pump
Glutamate - Monoamine (DAT, NET, SERT) - Vesicular monoamine (VMAT1, VMAT2) - Vesicular acetylcholine
- pl:Białko transportowe
This page uses Creative Commons Licensed content from Wikipedia (view authors). |