Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)
Middle ear | ||
---|---|---|
[[Image:|190px|center|]] | ||
Latin | auris media | |
Gray's | subject #230 1037 | |
System | ||
MeSH | A09.246.397 | |
[[Image:|190px|center|]] | ||
The middle ear is the air filled portion of the ear internal to the eardrum, and external to the oval window of the cochlea. The mammalian middle ear contains three ossicles, which couple vibration of the eardrum into waves in the fluid and membranes of the inner ear. The hollow space of the middle ear has also been called the tympanic cavity, or cavum tympani. The eustachian tube joins the tympanic cavity with the nasal cavity (nasopharynx), allowing pressure to equalize between the inner ear and throat.
The primary function of the middle ear is to efficiently transfer acoustic energy from compression waves in air to fluid–membrane waves within the cochlea.
Sound transfer[]
Ordinarily, when sound waves in air strike liquid, most of the energy is reflected off the surface of the liquid. The middle ear allows the impedance matching of sound traveling in air to acoustic waves traveling in a system of fluids and membranes in the inner ear. This system should not be confused, however, with the propagation of sound as compression waves in a liquid.
The middle ear couples sound from air to the fluid via the oval window, using the principle of "mechanical advantage" in the form of the "hydraulic principle" and the "lever principle".[1] The vibratory portion of the tympanic membrane is many times the surface area of the footplate of the stapes; furthermore, the shape of the articulated ossicular chain is like a lever, the long arm being the long process of the malleus, and the body of the incus being the fulcrum and the short arm being the lenticular process of the incus. The collected pressure of sound vibration that strikes the tympanic membrane is therefore concentrated down to this much smaller area of the footplate, increasing the force but reducing the velocity and displacement, and thereby coupling the acoustic energy.
The middle ear is able to dampen sound conduction substantially when faced with very loud sound, by noise-induced reflex contraction of the middle-ear muscles.
Ossicles[]
The middle ear contains three tiny bones known as the ossicles: malleus, incus, and stapes. The ossicles were given their Latin names for their distinctive shapes; they are also referred to as the hammer, anvil, and stirrup, respectively. The ossicles directly couple sound energy from the ear drum to the oval window of the cochlea. While the stapes is present in all tetrapods, the malleus and incus evolved from lower and upper jaw bones present in reptiles. See Evolution of mammalian auditory ossicles.
The ossicles are classically supposed to mechanically convert the vibrations of the eardrum, into amplified pressure waves in the fluid of the cochlea (or inner ear) with a lever arm factor of 1.3. Since the area of the eardrum is about 17 fold larger than that of the oval window, the sound pressure is concentrated, leading to a pressure gain of at least 22. The eardrum is fused to the malleus, which connects to the incus, which in turn connects to the stapes. Vibrations of the stapes footplate introduce pressure waves in the inner ear. There is a steadily increasing body of evidence which shows that the lever arm ratio is actually variable, depending on frequency. Between 0.1 and 1 kHz it is approximately 2, it then rises to around 5 at 2 kHz and then falls off steadily above this frequency.[2] The measurement of this lever arm ratio is also somewhat complicated by the fact that the ratio is generally given in relation to the tip of the malleus (also known as the umbo) and the level of the middle of the stapes. The eardrum is actually attached to the malleus handle over about a 1cm distance. In addition the eardrum itself moves in a very chaotic fashion at frequencies >3 kHz. The linear attachment of the eardrum to the malleus actually smooths out this chaotic motion and allows the ear to respond linearly over a wider frequency range than a point attachment. The auditory ossicles can also reduce sound pressure (the inner ear is very sensitive to overstimulation), by uncoupling each other through particular muscles.
The middle ear efficiency peaks at a frequency of around 1 kHz. The combined transfer function of the outer ear and middle ear gives humans a peak sensitivity to frequencies between 1 kHz and 3 kHz.
Muscles[]
The movement of the ossicles may be stiffened by two muscles, the stapedius and tensor tympani, which are under the control of the facial nerve and trigeminal nerve, respectively. These muscles contract in response to loud sounds, thereby reducing the transmission of sound to the inner ear. This is called the acoustic reflex.
Nerves[]
Of surgical importance are two branches of the facial nerve which also pass through the middle ear space. These are the horizontal and chorda tympani branches of the facial nerve. Damage to the horizontal branch during surgery can lead to partial, mastoid process paralysis.
Comparative anatomy[]
Mammals are unique in having three ear bones. The incus and malleus have evolved from bones of the jaw, and allow finer detection of sound.
Some mammals, such as the cat, have an enlarged middle ear encased in a thin, bulbous bone; this structure is known as a bulla.
Disorders of the middle ear[]
The middle ear is hollow. If the animal moves to a high-altitude environment, or dives into the water, there will be a pressure difference between the middle ear and the outside environment. This pressure will pose a risk of bursting or otherwise damaging the tympanum if it is not relieved. This is one of the functions of the Eustachian tubes which connect the middle ear to the nasopharynx. The Eustachian tubes are normally pinched off at the nose end, to prevent being clogged with mucus, but they may be opened by lowering and protruding the jaw; this is why yawning helps relieve the pressure felt in the ears when on board an aircraft.
Otitis media is an inflammation of the middle ear.
Additional images[]
See also[]
References[]
- ↑ Joseph D. Bronzino (2006). Biomedical Engineering Fundamentals, CRC Press.
- ↑ Koike et al.: Modeling of the human middle ear J. Acoust. Soc. Am., Vol. 111, No. 3, March 2002
Further reading[]
- Al-Fadala, S., & Holmquist, J. (1984). Otoscopy and tympanometry in screening for middle ear disorders in children: Scandinavian Audiology Vol 13(4) 1984, 297-299.
- Asbjornsen, A. E., Obrzut, J. E., Boliek, C. A., Myking, E., Holmefjord, A., Reisaeter, S., et al. (2005). Impaired Auditory Attention Skills Following Middle-Ear Infections: Child Neuropsychology Vol 11(2) Apr 2005, 121-133.
- Attias, J., Nageris, B., Ralph, J., Vajda, J., & Rappaport, Z. H. (2008). Hearing preservation using combined monitoring of extra-tympanic electrocochleography and auditory brainstem responses during acoustic neuroma surgery: International Journal of Audiology Vol 47(4) Apr 2008, 178-184.
- Baldanza, S., & De Gennaro, L. (2002). Middle ear muscle activity during sleep: A critical review of the literature: Rassegna di Psicologia Vol 19(1) 2002, 55-71.
- Baldwin, M. (2006). Choice of probe tone and classification of trace patterns in tympanometry undertaken in early infancy: International Journal of Audiology Vol 45(7) Jul 2006, 417-427.
- Barrett, A. R. (2007). The contribution of ultra-high frequency hearing on distortion product otoacoustic emission amplitudes. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Benson, K. L., & Zarcone, V. P. (1982). Middle ear muscle activity during REM sleep in schizophrenic, schizoaffective, and depressed patients: American Journal of Psychiatry Vol 139(11) Nov 1982, 1474-1476.
- Benson, K. L., & Zarcone, V. P. (1985). Testing the REM sleep phasic event intrusion hypothesis of schizophrenia: Psychiatry Research Vol 15(3) Jul 1985, 163-173.
- Bobbin, B. P., & Konishi, T. (1974). Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction: Acta Oto-Laryngologica Vol 77(1-2) Jan 1974, 56-65.
- Borg, E. (1972). Acoustic middle ear reflexes: A sensory-control system: Acta Oto-Laryngologica Suppl 304 1972, 34.
- Borg, E. (1972). On the use of acoustic middle ear muscle reflexes in studies of auditory function in non-anesthetized rabbits: Acta Oto-Laryngologica Vol 74(4) Oct 1972, 240-247.
- Borg, E. (1973). On the neuronal organization of the acoustic middle ear reflex: A physiological and anatomical study: Brain Research Vol 49 1973, 101-123.
- Boyce, W. T., Essex, M. J., Alkon, A., Smider, N. A., Pickrell, T., & Kagan, J. (2002). Temperament, tympanum and temperature: Four provisional studies of the biobehavioral correlates of tympanic membrane temperature asymmetries: Child Development Vol 73(3) May-Jun 2002, 718-733.
- Brainerd, S. H., & Beasley, D. S. (1971). Respondent conditioning of the middle ear reflex: Journal of Auditory Research Vol 11(3) Jul 1971, 234-238.
- Brooks, D. N. (1977). Middle-ear impedance measurements in screening: Audiology Vol 16(4) Jul-Aug 1977, 288-293.
- Bruns, J. M., Cram, J. T., & Rogers, G. J. (1979). Impedance and otoscopy screening of multiply handicapped children in school: Language, Speech, and Hearing Services in Schools Vol 10(1) Jan 1979, 54-58.
- Cairns, W. (1998). The patulous Eustachian tube syndrome: Palliative Medicine Vol 12(1) Jan 1998, 59-60.
- Cenacchi, G., Ferri, G. G., Salfi, N., Tarantino, L., Modugno, G. C., Ceroni, A. R., et al. (2008). Secretory meningioma of the middle ear: A light microscopic, immunohistochemical and ultrastructural study of one case: Neuropathology Vol 28(1) Feb 2008, 69-73.
- Chen, C.-S., Gates, G. R., & Bock, G. R. (1973). Effect of priming and tympanic membrane destruction on development of audiogenic seizure susceptibility in BALB/c mice: Experimental Neurology Vol 39(2) May 1973, 277-284.
- Cheng, T. (2007). Mechanical properties of human middle ear tissues. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Cherbuin, N., & Brinkman, C. (2004). Cognition is cool: Can hemispheric activation be assessed by tympanic membrane thermometry? : Brain and Cognition Vol 54(3) Apr 2004, 228-231.
- Chia-Shong, C., & Gates, G. R. (1977). Maturational state of the auditory receptor system and the sensitive period for priming for audiogenic seizure in mice: Experimental Neurology Vol 54(2) Feb 1977, 283-290.
- Christensen-Dalsgaard, J., & Carr, C. E. (2008). Evolution of a sensory novelty: Tympanic ears and the associated neural processing: Brain Research Bulletin Vol 75(2-4) Mar 2008, 365-370.
- Chung, S.-h., Pettigrew, A., & Anson, M. (1978). Dynamics of the amphibian middle ear: Nature Vol 272(5649) Mar 1978, 142-147.
- Counter, S. A., Borg, E., & Engstrom, B. (1989). Acoustic middle ear reflexes in laboratory animals using clinical equipment: Technical considerations: Audiology Vol 28(3) May-Jun 1989, 135-143.
- Creten, W. L., Vanpeperstraete, P. M., Van Camp, K. J., & Doclo, J. R. (1976). An experimental study on diphasic acoustic reflex patterns in normal ears: Scandinavian Audiology Vol 5(1) 1976, 3-8.
- Crowley, D. E. (1972). Comments on otitis media in rats: Journal of Auditory Research Vol 12(2) Apr 1972, 125-128.
- Curcio, G., Ferrara, M., De Gennaro, L., Cristiani, R., D'Lnzeo, G., & Bertini, M. (2004). Time-course of electromagnetic field effects on human performance and tympanic temperature: Neuroreport: For Rapid Communication of Neuroscience Research Vol 15(1) Jan 2004, 161-164.
- Curry, M. D., Mathews, H. F., Daniell, H. J., III, Johnson, J. C., & Mansfield, C. J. (2002). Beliefs about and responses to childhood ear infections: A study of parents in Eastern North Carolina: Social Science & Medicine Vol 54(8) Apr 2002, 1153-1165.
- Czarnik, K. A. (1997). Interactions between phonological and vocabulary development in children with histories of otitis media. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Damoiseaux, R. A. M. J., Rovers, M. M., Van Balen, F. A. M., Hoes, A. W., & de Melker, R. A. (2006). Long-term prognosis of acute otitis media in infancy: Determinants of recurrent acute otitis media and persistent middle ear effusion: Family Practice Vol 23(1) Feb 2006, 40-45.
- Daniel, H. J., Means, L. W., Dressel, M. E., & Loesche, P. J. (1973). Otitis media in laboratory rats: Physiological Psychology Vol 1(1) Mar 1973, 7-8.
- de Landa, D. C., Brasil-Neto, J. P., Boechat-Barros, R., & Uribe, C. (2008). Normative study of tympanic infrared thermometry: A non-invasive index of asymmetric cerebral activity: Arquivos de Neuro-Psiquiatria Vol 66(1) Mar 2008, 50-52.
- Dragsten, P. R., Webb, W. W., Paton, J. A., & Capranica, R. R. (1974). Auditory membrane vibrations: Measurements at sub-angstrom levels by optical heterodyne spectroscopy: Science Vol 185(4145) Jul 1974, 55-57.
- Falkenstein, A. R. (1989). Middle ear effusion in infancy and hyperactivity in middle childhood: Dissertation Abstracts International.
- Fazen, M. F. (1987). Morphology and topography of scalp potentials related to middle ear muscle activity in human REM sleep: Dissertation Abstracts International.
- Feldman, H. M., Dollaghan, C. A., Campbell, T. F., Colborn, D. K., Janosky, J., Kurs-Lasky, M., et al. (2003). Parent-reported language skills in relation to otitis media during the first 3 years of life: Journal of Speech, Language, and Hearing Research Vol 46(2) Apr 2003, 273-287.
- Fowler, C. G., Chiasson, K. B., Hart, D. B., Beasley, T. M., Kemnitz, J., & Weindruch, R. (2008). Tympanometry in rhesus monkeys: Effects of aging and caloric restriction: International Journal of Audiology Vol 47(4) Apr 2008, 209-214.
- Franz, P., Hamzavi, J. S., Schneider, B., & Ehrenberger, K. (2003). Do Middle Ear Muscles Trigger Attacks of Meniere's Disease? : Acta Oto-Laryngologica Vol 123(2) 2003, 133-137.
- Fridberger, A., de Monvel, J. B., & Ulfendahl, M. (2002). Internal Shearing within the Hearing Organ Evoked by Basilar Membrane Motion: Journal of Neuroscience Vol 22(22) Nov 2002, 9850-9857.
- Gates, G. R., Chen, C.-S., & Bock, G. R. (1973). Effects of monaural and binaural auditory deprivation on audiogenic seizure susceptibility in BALB/c mice: Experimental Neurology Vol 38(3) Mar 1973, 488-493.
- Givens, G. D., & Seidemann, M. F. (1977). Middle ear measurements in a difficult to test mentally retarded population: Mental Retardation Vol 15(5) Oct 1977, 40-42.
- Gladstone, V. S. (1978). A comparison of the effects of middle ear grafting material on acoustic impedance measurements and audiometry: Dissertation Abstracts International.
- Gordon, A. G. (1986). Otoneurological abnormalities in agoraphobia: American Journal of Psychiatry Vol 143(6) Jun 1986, 807.
- Gordon, A. G. (1996). Ear disease and schizophrenia--brain not needed? : Acta Psychiatrica Scandinavica Vol 93(5) May 1996, 409-411.
- Grassi, S., Magni, F., & Ottaviani, F. (1983). Identification of the motoneurons innervating the stapedius muscle in Gallus gallus: A horseradish peroxidase study: Archives Italiennes de Biologie Vol 121(1) Jan 1983, 37-45.
- Gratton, M. A., Bateman, K., Cannuscio, J. F., & Saunders, J. C. (2008). Outer- and middle-ear contributions to presbycusis in the brown Norway rat: Audiology & Neurotology Vol 13(1) Dec 2008, 37-52.
- Gunnar, M. R., & Donzella, B. (2004). Tympanic Membrane Temperature and Emotional Dispositions in Preschool-Aged Children: A Methodological Study: Child Development Vol 75(2) Mar-Apr 2004, 497-504.
- Hall, J. W. (1982). Acoustic reflex amplitude: II. Effect of age-related auditory dysfunction: Audiology Vol 21(5) Sep-Oct 1982, 386-399.
- Hall, J. W., & Derlacki, E. L. (1988). Binaural hearing after middle ear surgery: Masking-level difference for interaural time and amplitude cues: Audiology Vol 27(2) Mar-Apr 1988, 89-98.
- Heilman, K. J., Bal, E., Bazhenova, O. V., & Porges, S. W. (2007). Respiratory sinus arrhythmia and tympanic membrane compliance predict spontaneous eye gaze behaviors in young children: A pilot study: Developmental Psychobiology Vol 49(5) Jul 2007, 531-542.
- Hellstrom, P.-A. (1993). The relationship between sound transfer functions from free sound field to the eardrum and temporary threshold shift: Journal of the Acoustical Society of America Vol 94(3, Pt 1) Sep 1993, 1301-1306.
- Hetherington, T. E. (1994). Sexual differences in the tympanic frequency responses of the American bullfrog ( Rana catesbiana ): Journal of the Acoustical Society of America Vol 96(2, Pt 1) Aug 1994, 1186-1188.
- Hof, J. R., Anteunis, L. J. C., Chenault, M. N., & van Dijk, P. (2005). Otoacoustic emissions at compensated middle ear pressure in children: International Journal of Audiology Vol 44(6) Jun 2005, 317-320.
- Holtby, I., & Forster, D. P. (1992). Evaluation of pure tone audiometry and impedance screening in infant schoolchildren: Journal of Epidemiology & Community Health Vol 46(1) Feb 1992, 21-25.
- Hopkins, W. D., & Fowler, L. A. (1998). Lateralized changes in tympanic membrane temperature in relation to different cognitive tasks in chimpanzees (Pan troglodytes): Behavioral Neuroscience Vol 112(1) Feb 1998, 83-88.
- Horovitz, L. J., & et al. (1978). Stapedial reflex and anxiety in fluent and disfluent speakers: Journal of Speech & Hearing Research Vol 21(4) Dec 1978, 762-767.
- Humes, L. E. (1978). The effects of middle ear muscle contraction on auditory and overload thresholds: Audiology Vol 17(4) Jul-Aug 1978, 360-367.
- Hunt, M. A., Miller, S. W., Nielson, H. C., & Horn, K. M. (1987). Intratympanic injection of sodium arsanilate (atoxyl) solution results in postural changes consistent with changes described for labyrinthectomized rats: Behavioral Neuroscience Vol 101(3) Jun 1987, 427-428.
- Hyman, A. M. (1979). The effects of taste stimuli in mixtures on electrophysiological activity of the hamster chorda tympani nerve and its single fibers: Dissertation Abstracts International.
- Irvine, D. R., & Webster, W. R. (1972). Studies of peripheral gating in the auditory system of cats: Electroencephalography & Clinical Neurophysiology Vol 32(5) May 1972, 545-556.
- Irvine, R. F., & Wester, K. G. (1973). Bone conduction as a means of acoustic input control: The effects of middle ear muscle contractions: Electroencephalography & Clinical Neurophysiology Vol 34(1) Jan 1973, 80-82.
- Ivarsson, A., Tjernstrom, O., Bylander, A., & Bennrup, S. (1983). High speed tympanometry and ipsilateral middle ear reflex measurements using a computerized impedance meter: Scandinavian Audiology Vol 12(3) 1983, 157-163.
- Jacob, R. G., Moller, M. B., Turner, S. M., & Wall, C. (1986). Dr. Jacob and associates reply: American Journal of Psychiatry Vol 143(6) Jun 1986, 807-808.
- Jeter, I. K. (1976). Waveform patterns of reflex and voluntary contraction of the middle ear muscles: Journal of Auditory Research Vol 16(3) Jul 1976, 183-191.
- Johnson, D. L., McCormick, D. P., & Baldwin, C. D. (2008). Early middle ear effusion and language at age seven: Journal of Communication Disorders Vol 41(1) Jan-Feb 2008, 20-32.
- Kastak, D., & Schusterman, R. J. (2002). Changes in auditory sensitivity with depth in a free-diving California sea lion (Zalophus californianus): Journal of the Acoustical Society of America Vol 112(1) Jul 2002, 329-333.
- Kei, J., Hourigan, A., Moore, K., Keogh, T., & Driscoll, C. (2005). Tympanometric Findings in Children at School Entry: A Normative Study: Australian and New Zealand Journal of Audiology Vol 27(2) Nov 2005, 89-95.
- Keith, R. W., & Bench, R. J. (1978). Stapedial reflex in neonates: Scandinavian Audiology Vol 7(4) 1978, 187-191.
- Khanna, S. M., & Tonndorf, J. (1972). Tympanic membrane vibrations in cats studied by time-averaged holography: Journal of the Acoustical Society of America Vol 51(6, Pt 2) Jun 1972, 1904-1920.
- Khechinashvili, S. N., Kevanishvili, Z. S., & Kadzhaya, O. A. (1972). Evoked potentials of the auditory system in man: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 58(4) Apr 1972, 527-533.
- Koebsell, K. A., & Margolis, R. H. (1986). Tympanometric gradient measured from normal preschool children: Audiology Vol 25(3) May-Jun 1986, 149-157.
- Koebsell, K. A., & Margolis, R. H. (1989). "Tympanometric gradient measured from normal preschool children": Erratum: Audiology Vol 28(2) Mar-Apr 1989, 117.
- Koike, T., Murakoshi, M., Hamanishi, S., Yuasa, Y., Yuasa, R., Kobayashi, T., et al. (2006). An apparatus for diagnosis of ossicular chain mobility in humans: International Journal of Audiology Vol 45(2) Feb 2006, 121-128.
- Kopke, R. D., Wassel, R. A., Mondalek, F., Grady, B., Chen, K., Liu, J., et al. (2006). Magnetic Nanoparticles: Inner Ear Targeted Molecule Delivery and Middle Ear Implant: Audiology & Neurotology Vol 11(2) Jan 2006, 123-133.
- Kruger, B. (1975). The effects of tympanic membrane perforations on sound transmission: Audiological implications: Dissertation Abstracts International.
- Landholt, T. F., & Kotschwar, T. R. (1994). A pharmacoeconomic comparison of amoxicillin/clavulanate and cefpodoxime proxetil in the treatment of acute otitis media: Clinical Therapeutics: The International Peer-Reviewed Journal of Drug Therapy Vol 16(2) Mar-Apr 1994, 327-333.
- Legouix, J. P., & Pierson, A. (1981). Auditory frequency selectivity and discrimination in mammals: Journal de Psychologie Normale et Pathologique No 2-3 Apr-Sep 1981, 225-239.
- Li, X., Bu, X., & Driscoll, C. (2006). Tympanometric norms for Chinese schoolchildren: International Journal of Audiology Vol 45(1) Jan 2006, 55-59.
- Liden, G., Harford, E., & Hallen, O. (1974). Automatic tympanometry in clinical practice: Audiology Vol 13(2) Mar 1974, 126-139.
- Lin, C.-Y., Yang, Y.-C., Guo, Y. L., Wu, C.-H., Chang, C.-J., & Wu, J.-L. (2007). Prevalence of hearing impairment in an adult population in southern Taiwan: International Journal of Audiology Vol 46(12) Dec 2007, 732-737.
- Lindsay, R. L., Tomazic, T., Whitman, B. Y., & Accardo, P. J. (1999). Early ear problems and developmental problems at school age: Clinical Pediatrics Vol 38(3) Mar 1999, 123-132.
- Lloyd, S., Meerton, L., di Cuffa, R., Lavy, J., & Graham, J. (2007). Taste change following cochlear implantation: Cochlear Implants International Vol 8(4) Dec 2007, 203-210.
- Luo, Z.-X., Chen, P., Li, G., & Chen, M. (2007). A new eutriconodont mammal and evolutionary development in early mammals: Nature Vol 446(7133) Mar 2007, 288-293.
- Macrae, J. H. (1974). Body inversion and the acoustic immitance of the ear: Journal of Speech & Hearing Research Vol 17(2) Jun 1974, 310-320.
- Manchester, D. M. (1980). The effects of persistent middle ear infections on central auditory function: Dissertation Abstracts International.
- Mangan, J. E. (1978). Functional characteristics of the middle ear muscles of stutterers and nonstutterers: Dissertation Abstracts International.
- Marchisio, P., Principi, N., Passali, D., Salpietro, C., Boschi, G., Chetri, G., et al. (1998). Epidemiology and treatment of otitis media with effusion in children in the first year of primary school: Acta Oto-Laryngologica Vol 118(4) 1998, 557-562.
- Margolis, R. H., & Popelka, G. R. (1975). Static and dynamic acoustic empedance measurements in infant ears: Journal of Speech & Hearing Research Vol 18(3) Sep 1975, 435-443.
- Marshall, L., Brandt, J. F., & Marston, L. E. (1975). Anticipatory middle-ear reflex activity from noisy toys: Journal of Speech & Hearing Disorders Vol 40(3) Aug 1975, 320-326.
- Martin, F. N., & Mordaunt, K. (1974). The effects of artificially-induced conductive hearing loss in the middle ear muscle reflex threshold: Journal of Auditory Research Vol 14(3) Jul 1974, 200-202.
- Mason, M. J., Lin, C. C., & Narins, P. M. (2003). Sex differences in the middle ear of the bullfrog (Rana catesbeiana): Brain, Behavior and Evolution Vol 61(2) Mar 2003, 91-101.
- Mason, M. J., & Narins, P. M. (2002). Seismic sensitivity in the desert golden mole (Eremitalpa granti): A review: Journal of Comparative Psychology Vol 116(2) Jun 2002, 158-163.
- Mason, P., & Winton, F. (1996). "Ear disease and schizophrenia--brain not needed?": Reply: Acta Psychiatrica Scandinavica Vol 93(5) May 1996, 410-411.
- Mason, P., & Winton, F. (1996). Higher risk of ear disease in schizophrenia: Acta Psychiatrica Scandinavica Vol 93(6) Jun 1996, 494-495.
- Mason, P. R., & Winton, F. E. (1995). Ear disease and schizophrenia: A case-control study: Acta Psychiatrica Scandinavica Vol 91(4) Apr 1995, 217-221.
- Masters, L., & Marsh, G. E. (1978). Middle ear pathology as a factor in learning disabilities: Journal of Learning Disabilities Vol 11(2) Feb 1978, 103-106.
- Mayer, D. (1977). Beidler's taste equation applied to electrical taste: Acta Instituti Psychologici Universitatis Zagrabiensis No 79-86 1977, 51-54.
- Mazzoni, D. S., Ackley, R. S., & Nash, D. J. (1994). Abnormal pinna type and hearing loss correlations in Down's syndrome: Journal of Intellectual Disability Research Vol 38(6) Dec 1994, 549-560.
- McCall, G. N. (1973). Acoustic impedance measurement in the study of patients with spasmodic dysphonia: Journal of Speech & Hearing Disorders Vol 38(2) May 1973, 250-255.
- McDermott, J. C. (1983). Physical and behavioral aspects of middle ear disease in school children: Journal of School Health Vol 53(8) Oct 1983, 463-466.
- McKerrow-Bullerdieck, K. K. (1987). The interaction effects of hearing acuity, middle ear pressure, and grade on the reading achievement of elementary school students: Dissertation Abstracts International.
- McShane, D. A., & Plas, J. M. (1982). Otitis media, psychoeducational difficulties, and Native Americans: A review and a suggestion: Journal of Preventive Psychiatry Vol 1(3) 1982, 277-292.
- Means, L. W., Daniel, H. J., Jordan, L. H., & Loesche, P. J. (1975). Nonsusceptibility to otitis media of the laboratory gerbil, Meriones unguiculatus: Physiological Psychology Vol 3(3) Sep 1975, 229-230.
- Meiners, M. L., & Dabbs, J. M. (1977). Ear temperature and brain blood flow: Laterality effects: Bulletin of the Psychonomic Society Vol 10(3) Sep 1977, 194-196.
- Miccio, A. W., Gallagher, E., Grossman, C. B., Yont, K. M., & Vernon-Feagans, L. (2001). Influence of chronic otitis media on phonological acquisition: Clinical Linguistics & Phonetics Vol 15(1-2) Jan 2001, 47-51.
- Morita, T., Chimura, A., & Tokura, H. (2004). Preferred illuminance self-selected by women under the influence of face cooling: Physiology & Behavior Vol 81(1) Mar 2004, 23-27.
- Narins, P. M. (1992). Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui: Journal of the Acoustical Society of America Vol 91(6) Jun 1992, 3551-3557.
- Neeser, J. A., & von Bartheld, C. S. (2002). Comparative Anatomy of the Paratympanic Organ (Vitali Organ) in the Middle Ear of Birds and Non-Avian Vertebrates: Focus on Alligators, Parakeets and Armadillos: Brain, Behavior and Evolution Vol 60(2) Aug 2002, 65-79.
- Neti, C., Young, E. D., & Schneider, M. H. (1992). Neural network models of sound localization based on directional filtering by the pinna: Journal of the Acoustical Society of America Vol 92(6) Dec 1992, 3140-3156.
- Nittrouer, S. (1996). The relation between speech perception and phonemic awareness: Evidence from low-SES children and children with chronic OM: Journal of Speech & Hearing Research Vol 39(5) Oct 1996, 1059-1070.
- No authorship, i. (2005). Parent satisfaction OK with no treatment of otitis: The Journal of Family Practice Vol 54(9) Sep 2005, 754.
- Oghan, F., Harputluoglu, U., Guclu, E., Guvey, A., Turan, N., & Ozturk, O. (2007). Permanent t-tube insertion in two patients with Hurler's syndrome: International Journal of Audiology Vol 46(2) Feb 2007, 94-96.
- Osterhammel, P. A., Shallop, J. K., & Terkildsen, K. (1985). The effect of sleep on the auditory brainstem response (ABR) and the middle latency response (MLR): Scandinavian Audiology Vol 14(1) 1985, 47-50.
- Packer, D. J. (1984). Physiological noise, carotid arteries, and auditory sensitivity in mammals: Dissertation Abstracts International.
- Palmer, A. A., & Printz, M. P. (1998). Attenuation of Fos expression to airpuff startle stimuli following tympanic membrane rupture: Brain Research Vol 787(1) Mar 1998, 91-98.
- Paradise, J. L., Campbell, T. F., Dollaghan, C. A., Feldman, H. M., Bernard, B. S., Colborn, D. K., et al. (2005). Developmental Outcomes after Early or Delayed Insertion of Tympanostomy Tubes: New England Journal of Medicine Vol 353(6) Aug 2005, 576-586.
- Paradise, J. L., Feldman, H. M., Campbell, T. F., Dollaghan, C. A., Rockette, H. E., Pitcairn, D. L., et al. (2007). Tympanostomy tubes and developmental outcomes at 9 to 11 years of age: New England Journal of Medicine Vol 356(3) Jan 2007, 248-261.
- Paul, R., Lynn, T. F., & Lohr-Flanders, M. (1993). History of middle ear involvement and speech/language development in late talkers: Journal of Speech & Hearing Research Vol 36(5) Oct 1993, 1055-1062.
- Pessah, M. A., & Roffwarg, H. P. (1972). Spontaneous middle ear muscle activity in man: A rapid eye movement sleep phenomenon: Science Vol 178(4062) Nov 1972, 773-776.
- Petinou, K. C. (1997). The effects of otitis media on phonological and morphological perception in young children. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Petrova, P., Freeman, S., & Sohmer, H. (2007). Mechanism and rate of middle ear fluid absorption: Audiology & Neurotology Vol 12(3) Apr 2007, 155-159.
- Polka, L., & Rvachew, S. (2005). The Impact of Otitis Media With Effusion on Infant Phonetic Perception: Infancy Vol 8(2) 2005, 101-117.
- Porter, T. A., & Winston, M. E. (1973). Methodological aspects of admittance measurements of the middle ear: Journal of Auditory Research Vol 13(2) Apr 1973, 172-177.
- Porter, T. A., & Winston, M. E. (1973). Reliability of measures obtained with the otoadmittance meter: Journal of Auditory Research Vol 13(2) Apr 1973, 142-146.
- Priner, R., Freeman, S., Perez, R., & Sohmer, H. (2003). The neonate has a temporary conductive hearing loss due to fluid in the middle ear: Audiology & Neurotology Vol 8(2) Mar-Apr 2003, 100-110.
- Raghavan, M. V., Abrol, B. M., & Pujara, K. K. (1974). Problems encountered in measurement of human tympanic membrane using time averaged holography: Journal of the All-India Institute of Speech & Hearing Vol 5-6 Jan 1974-1975, 28-34.
- Rahko-Laitila, P., Karma, P., Laippala, P., Salmelin, R., Sipila, M., Manninen, M., et al. (2001). The pure-tone hearing thresholds of otologically healthy 14-yr-old children: Audiology Vol 40(4) Jul-Aug 2001, 171-177.
- Ravizza, R. (1976). Our Present Understanding of the Anatomy and Physiology of Hearing Mechanisms: PsycCRITIQUES Vol 21 (7), Jul, 1976.
- Rawool, V. W., & Harrington, B. T. (2007). Middle Ear Admittance and Hearing Abnormalities in Individuals with Osteoarthritis: Audiology & Neurotology Vol 12(2) Jan 2007, 127-136.
- Reuss, S., Al-Butmeh, S., & Riemann, R. (2008). Motoneurons of the stapedius muscle in the guinea pig middle ear: Afferent and efferent transmitters: Brain Research Vol 1221 Jul 2008, 59-66.
- Riedel, C. L., Wiley, T. L., & Block, M. G. (1987). Tympanometric measures of Eustachian tube function: Journal of Speech & Hearing Research Vol 30(2) Jun 1987, 207-214.
- Roberts, C. M. (2008). The impact of rheumatoid arthritis on middle ear function. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Rowan, D., Kapadia, S., & Lutman, M. E. (2004). Does Static Ear Canal Pressure Influence Pure Tone Pitch Perception? : Acta Oto-Laryngologica Vol 124(3) Apr 2004, 286-289.
- Ryan, A. F., Ebmeyer, J., Furukawa, M., Pak, K., Melhus, A., Wasserman, S. I., et al. (2006). Mouse models of induced otitis media: Brain Research Vol 1091(1) May 2006, 3-8.
- Sagalovitch, B. M., & Malinkin, V. B. (1978). The significance of nonlinear distortions in the cochlear for perception of sonic and ultrasonic stimuli: Fiziologicheskii Zhurnal SSSR im I M Sechenova Vol 64(6) Jun 1978, 737-740.
- Santarelli, R., Starr, A., Michalewski, H. J., & Arslan, E. (2008). Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy: Clinical Neurophysiology Vol 119(5) May 2008, 1028-1041.
- Saunders, J. C., & Johnstone, B. M. (1972). A comparative analysis of middle-ear function in non-mammalian vertebrates: Acta Oto-Laryngologica Vol 73(4) Apr 1972, 353-361.
- Shahnaz, N. (2008). Transient evoked otoacoustic emissions (TEOAEs) in Caucasian and Chinese young adults: International Journal of Audiology Vol 47(2) Feb 2008, 76-83.
- Shera, C. A., & Zweig, G. (1992). Analyzing reverse middle-ear transmission: Noninvasive Gedankenexperiments: Journal of the Acoustical Society of America Vol 92(3) Sep 1992, 1371-1381.
- Shriberg, L. D., & Smith, A. J. (1983). Phonological correlates of middle-ear involvement in speech-delayed children: A methodological note: Journal of Speech & Hearing Research Vol 26(2) Jun 1983, 293-297.
- Sieminski, L. R., Durrant, J. D., Rosenberg, P. E., & Lovrinic, J. H. (1977). Stapedial reflexes in normal versus recruiting ears: Journal of Auditory Research Vol 17(4) Oct 1977, 251-261.
- Snik, A. F. M., van Duijnhoven, N. T. L., Mulder, J. J. S., & Cremers, C. W. R. J. (2007). Evaluation of the subjective effect of middle ear implantation in hearing-impaired patients with severe external otitis: Journal of the American Academy of Audiology Vol 18(6) Jun 2007, 496-509.
- Sprague, B. H., Wiley, T. L., & Goldstein, R. (1985). Tympanometric and acoustic-reflex studies in neonates: Journal of Speech & Hearing Research Vol 28(2) Jun 1985, 265-272.
- Stephens, M. B. (2001). Does delaying placement of tympanostomy tubes have an adverse effect on developmental outcomes in children with persistent middle ear effusions? : The Journal of Family Practice Vol 50(8) Aug 2001, 651.
- Suzuki, M., Kitano, H., Yazawa, Y., & Kitajima, K. (1998). Involvement of round and oval windows in the vestibular response to pressure changes in the middle ear of guinea pigs: Acta Oto-Laryngologica Vol 118(5) 1998, 712-716.
- Suzuki, N., Asamura, K., Kikuchi, Y., Takumi, Y., Abe, S., Imamura, Y., et al. (2005). Type IX collagen knock-out mouse shows progressive hearing loss: Neuroscience Research Vol 51(3) Mar 2005, 293-298.
- Swift, A. B. (1986). Tympanic thermometry: A non-invasive measure of hemispheric activity: Dissertation Abstracts International.
- Tomaz, C., Verburg, M. S., Boere, V., Pianta, T. F., & Belo, M. (2003). Evidence of hemispheric specialization in marmosets (Callithrix penicillata) using tympanic membrane thermometry: Brazilian Journal of Medical and Biological Research Vol 36(7) Jul 2003, 913-918.
- Tribukait, A., & Bergenius, J. (1998). The subjective visual horizontal after stapedotomy: Evidence for an increased resting activity in otolithic afferents: Acta Oto-Laryngologica Vol 118(3) 1998, 299-306.
- Trnavsky, P. A. (1979). Tympanic temperature: A new physiological measure for human newborns? : Dissertation Abstracts International.
- Tsirul'nikov, E. M. (1994). Physiological and clinical approaches to mechanoreception: Sensory Systems Vol 7(3) Jul-Sep 1994, 168-175.
- Tucker, D. A., Dietrich, S., Harris, S., & Pelletier, S. (2002). Effects of stimulus rate and gender on the auditory middle latency response: Journal of the American Academy of Audiology Vol 13(3) Mar 2002, 146-153.
- Tuck-Lee, J. P. (2008). Finite element analysis of middle ear mechanics. Dissertation Abstracts International: Section B: The Sciences and Engineering.
- Venkatesh Aithal, H. (1982). Eustachian tube function in geriatric subjects: Journal of the All-India Institute of Speech & Hearing Vol 13 1982, 181-191.
- von Bartheld, C. S. (1994). Functional morphology of the paratympanic organ in the middle ear of birds: Brain, Behavior and Evolution Vol 44(2) Aug 1994, 61-73.
- Voogt, G. R., Halama, A. R., & Van der Merwe, C. A. (1986). Immittance screening in Black preschool children attending day-care centres: Audiology Vol 25(3) May-Jun 1986, 158-164.
- Ward, W. D. (1974). Psychophysical correlates of middle-ear-muscle action. Oxford, England: D Reidel.
- Weatherby, L. A. (1986). Consonant perception by children with middle ear effusions: Dissertation Abstracts International.
- Webster, A., Saunders, E., & Bamford, J. M. (1984). Fluctuating conductive hearing impairment: AEP (Association of Educational Psychologists) Journal Vol 6(5) Win 1984, 6-19.
- Webster, D. B., & Webster, M. (1972). Kangaroo rat auditory thresholds before and after middle ear reduction: Brain, Behavior and Evolution Vol 5(1) 1972, 41-53.
- Welch, D., & Dawes, P. J. D. (2006). The effects of childhood otitis media on the acoustic reflex threshold at age 15: International Journal of Audiology Vol 45(6) Jun 2006, 353-359.
- Wiley, T. L. (1989). Static acoustic-admittance measures in normal ears: A combined analysis for ears with and without notched tympanograms: Journal of Speech & Hearing Research Vol 32(3) Sep 1989, 688.
- Wiley, T. L., & Block, M. G. (1979). Static acoustic-immittance measurements: Journal of Speech & Hearing Research Vol 22(4) Dec 1979, 677-696.
- Wilson, R. H. (1979). Factors influencing the acoustic immittance characteristics of the acoustic reflex: Journal of Speech & Hearing Research Vol 22(3) Sep 1979, 480-499.
- Wilson, R. H., Shanks, J. E., & Velde, T. M. (1981). Aural acoustic-immittance measurements: Inter-aural differences: Journal of Speech & Hearing Disorders Vol 46(4) Nov 1981, 413-421.
- Wolff, A. P., May, M., & Nuelle, D. (1973). The tympanic membrane: A source of the cough reflex: JAMA: Journal of the American Medical Association Vol 223(11) Mar 1973, 1269.
- Zarcone, V. P., & Benson, K. L. (1995). Middle ear muscle activity (MEMA) in schizophrenia using a noninvasive technique: Sleep: Journal of Sleep Research & Sleep Medicine Vol 18(4) May 1995, 266-271.
- Zeig, J. K. (1978). Tympanic temperature, hypnosis and laterality: Dissertation Abstracts International.
- Zhao, F., Lowe, G., Meredith, R., & Rhodes, A. (2008). The characteristics of Otoreflectance and its test-retest reliability: Asia Pacific: Journal of Speech Language and Hearing Vol 11(1) Mar 2008, 1-7.
- Zhao, F., Wada, H., Koike, T., Ohyama, K., Kawase, T., & Stephens, D. (2003). Transient evoked otoacoustic emissions in patients with middle ear disorders: International Journal of Audiology Vol 42(3) Apr 2003, 117-131.
- Zheng, Q. Y., Hardisty-Hughes, R., & Brown, S. D. M. (2006). Mouse models as a tool to unravel the genetic basis for human otitis media: Brain Research Vol 1091(1) May 2006, 9-15.
External links[]
Sensory system: Auditory and Vestibular systems (TA A15.3, GA 10.1029) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Outer ear |
Pinna (Helix, Antihelix, Tragus, Antitragus, Incisura anterior auris, Earlobe) • Ear canal • Auricular muscles | ||||||||||||||
Middle ear |
| ||||||||||||||
Inner ear/ (membranous labyrinth, bony labyrinth) |
| ||||||||||||||
{| class="navbox collapsible nowraplinks" style="margin:auto; " | |||||||||||||||
|
|}
This page uses Creative Commons Licensed content from Wikipedia (view authors). |