Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Animals · Animal ethology · Comparative psychology · Animal models · Outline · Index
A poikilotherm is an organism whose internal temperature varies considerably. It is the opposite of a homeotherm, an organism which maintains thermal homeostasis. Usually the variation is a consequence of variation in the ambient environmental temperature. Many terrestrial ectotherms are poikilothermic.[1] However some ectotherms remain in temperature-constant environments to the point that they are actually able to maintain a constant internal temperature (i.e. are homeothermic). It is this distinction that often makes the term "poikilotherm" more useful than the vernacular "cold-blooded", which is sometimes used to refer to ectotherms more generally. Poikilothermic animals include types of vertebrate animals, specifically fish, amphibians, and reptiles, as well as a large number of invertebrate animals. The Naked mole rat is the only mammal that is currently thought to be poikilothermic.[2][3]
Etymology[]
The term derives from Ancient Greek, poikilos (ποικίλος), meaning "varied"; and thermos (θερμός), meaning "heat".[4]
Physiology[]
For an important chemical reaction, poikilotherms may have four to ten enzyme systems that operate at different temperatures.[5] As a result, poikilotherms often have larger, more complex genomes than homeotherms in the same ecological niche. Frogs are a notable example of this effect, though their complex development is likely more important.[6]
Because their metabolism is variable and generally below that of homeothermic animals, sustained high-energy activities like powered flight in large animals or maintaining a large brain is generally beyond poikilotherm animals.[7] The metabolism of poikilotherms favors strategies such as sit-and-wait hunting over chasing prey for larger animals with high movement cost. As they do not use their metabolisms to heat or cool themselves, total energy requirement over time is low. For the same body weight, poikilotherms need a half to a tenth of the energy of homeotherms.[8]
Adaptations in poikilotherms[]
- Some adaptations are behavioral. Lizards and snakes bask in the sun in the early morning and late evening, and seek shelter around noon.
- Termite mounds are usually oriented in a north-south direction so that they absorb as much heat as possible around dawn and dusk and minimise heat absorption around noon.
- Tuna are able to warm their entire bodies through a heat exchange mechanism called the rete mirabile, which helps keep heat inside the body, and minimises the loss of heat through the gills. They also have their swimming muscles near the center of their bodies instead of near the surface, which minimises heat loss.
- Gigantothermy means using a low ratio of surface area to volume to minimise heat loss, such as in sea turtles.
Ecology[]
It is comparatively easy for a poikilotherm to accumulate enough energy to reproduce. Poikilotherms at the same trophic level often have much shorter generations than homeotherms: weeks rather than years.[citation needed] Such applies even to animals with similar ecological roles such as cats and snakes.
This difference in energy requirement also means that a given food source can support a greater density of poikilothermic animals than homeothermic animals.[9] This is reflected in the predator-prey ratio which is usually higher in poikilothermic fauna compared to homeothermic ones. However, when homeotherms and poikilotherms have similar niches, and compete, the homeotherm can often drive poikilothermic competitors to extinction, because homeotherms can gather food for a greater fraction of each day.
Poikilotherms succeed in some habitats, such as islands and hot deserts, or distinct bioregions (such as the small bioregions of the Amazon basin). These biomes often do not have enough food to support a viable breeding population of homeothermic animals. In these habitats, poikilotherms such as large lizards, crabs and frogs supplant homeotherms such as birds and mammals.
In medicine[]
In medicine, loss of normal thermoregulation in humans is referred to as "poikilothermia". This is usually seen with sedative and hypnotic drugs. For example, barbiturates, ethanol, and chloral hydrate may precipitate this effect.[citation needed] REM sleep is also considered a poikilothermic state in humans[10] .
See also[]
Notes[]
- ↑ Milton Hildebrand; G. E. Goslow, Jr. Pprincipal ill. Viola Hildebrand. (2001). Analysis of vertebrate structure, New York: Wiley.
- ↑ Daly, T.J.M., Williams, L.A. and Buffenstein, R., (1997). Catecholaminergic innervation of interscapular brown adipose tissue in the naked mole-rat (Heterocephalus glaber). Journal of Anatomy, 190: 321-326. DOI:10.1046/j.1469-7580.1997.19030321.x
- ↑ Sherwin, C.M. (2010). The Husbandry and Welfare of Non-traditional Laboratory Rodents. In "UFAW Handbook on the Care and Management of Laboratory Animals", R. Hubrecht and J. Kirkwood (Eds). Wiley-Blackwell. Chapter 25, pp. 359-369
- ↑ Template:El icon Triantafyllidis Online Lexicon, ποικιλόθερμος, Retrieved on 2007-01-12
- ↑ Cavalier-Smith, T.. Coevolution of vertebrate genome, cell, and nuclear sizes. Symposium on the Evolution of Terrestrial Vertebrates: 51–86.
- ↑ Ryan Gregory, T. (1 January 2002). Genome size and developmental complexity. Genetica 115 (1): 131–146.
- ↑ Willmer, P., Stone, G. & Johnston, I.A. (2000): Environmental physiology of animals. Blackwell Science Ltd, London. 644 pages ISBN 0-632-03517-X
- ↑ Campbell, N.A., Reece, J.B. et al. (2002). Biology. 6th edition. Benjamin/Cummings Publishing Company, Inc.
- ↑ Steen, J.B, Steen, H. & Stenseth, N.C. (1991): Population Dynamics of Poikilotherm and Homeotherm Vertebrates: Effects of Food Shortage. OICOS Vol. 60, No 2 (March, 1991), pp 269-272. summary
- ↑ Leon Rosenthal (2009). "3" Teofilo Lee-Chiong Sleep Medicine Essentials, 12, Wiley-Blackwell.
Thermoregulation in animals | |
---|---|
File:Wiki tarantula.jpg | |
Poikilothermy · Heterothermy · Homeothermy (Gigantothermy) | |
Kleptothermy · Bradymetabolism · Tachymetabolism · Aestivation · Temperature effects · Thermal acclimatization |
This page uses Creative Commons Licensed content from Wikipedia (view authors). |