Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)
Different species adopt a variety of [reproductive strategies]] with consequent effects upon their sexual behavior
Some animals, such as the human and Northern Gannet, do not reach sexual maturity for many years after birth and even then produce few offspring. Others reproduce quickly; but, under normal circumstances, most offspring do not survive to adulthood. For example, a rabbit (mature after 8 months) can produce 10–30 offspring per year, and a fruit fly (mature after 10–14 days) can produce up to 900 offspring per year. These two main strategies are known as K-selection (few offspring) and r-selection (many offspring). Which strategy is favoured by evolution depends on a variety of circumstances. Animals with few offspring can devote more resources to the nurturing and protection of each individual offspring, thus reducing the need for many offspring. On the other hand, animals with many offspring may devote fewer resources to each individual offspring; for these types of animals it is common for many offspring to die soon after birth, but enough individuals typically survive to maintain the population. Some organisms such as honey bees and fruit flies retain sperm in a process called sperm storage thereby increasing the duration of their fertility.
Other types of reproductive strategies[]
- Main article: Semelparity and Iteroparity
Polycyclic animals reproduce intermittently throughout their lives.
Semelparous organisms reproduce only once in their lifetime, such as certain species of salmon and spider. Often, they die shortly after reproduction. This is often associated with r-strategists.
Iteroparous organisms produce offspring in successive (e.g. annual or seasonal) cycles. Iteroparous animals survive over multiple seasons (or periodic condition changes). This is more associated with K-strategists.
Asexual vs. sexual reproduction[]
Organisms that reproduce through asexual reproduction tend to grow in number exponentially. However, because they rely on mutation for variations in their DNA, all members of the species have similar vulnerabilities. Organisms that reproduce sexually yield a smaller number of offspring, but the large amount of variation in their genes makes them less susceptible to disease.
Many organisms can reproduce sexually as well as asexually. Aphids, sea anemones, some species of starfish (by fragmentation). When environmental factors are favorable, asexual reproduction is employed to exploit suitable conditions for survival such as an abundant food supply, adequate shelter, favorable climate, disease, optimum pH or a proper mix of other lifestyle requirements. Populations of these organisms increase exponentially via asexual reproductive strategies to take full advantage of the rich supply resources.
When food sources have been depleted, the climate becomes hostile, or individual survival is jeopardized by some other adverse change in living conditions, these organisms switch to sexual forms of reproduction. Sexual reproduction ensures a mixing of the gene pool of the species. The variations found in offspring of sexual reproduction allow some individuals to be better suited for survival and provide a mechanism for selective adaptation to occur. In addition, sexual reproduction usually results in the formation of a life stage that is able to endure the conditions that threaten the offspring of an asexual parent. Thus, seeds, spores, eggs, pupae, cysts or other "over-wintering" stages of sexual reproduction ensure the survival during unfavorable times and the organism can "wait out" adverse situations until a swing back to suitability occurs.
See also[]
- Cinderella effect
- Evolutionary psychology
- List of animals with stable pair bonds
- Mating systems
- Monogamous pairing in animals
- Monogamy
- Pair bonding
- Polygamy